

September 3, 2010

Mr. Dwayne Harrington (211MS211) U.S. Environmental Protection Agency Region 2 Raritan Depot 2890 Woodbridge Avenue Edison, NJ 08837-3679

Subject: Revised Draft Trip Report for the Riverside Avenue Site

Riverside Avenue, Newark, Essex County, New Jersey

EPA Contract No. EP-S7-06-01

TDD No. 0178

Document Tracking No. 1039

Dear Mr. Harrington:

Tetra Tech EM Inc. (Tetra Tech) is submitting the revised draft trip report for the Riverside Avenue Site located at 29-47 Riverside Avenue in Newark, New Jersey. The trip report summarizes the sampling activities conducted at the site between June 7 and 17, 2010 and the analytical results received. If you have any questions regarding the draft report, please contact me at (610) 364-2119.

Sincerely,

Kevin Scott Project Manager

Enclosure

cc: TDD File

www.tetratech.com

REVISED DRAFT TRIP REPORT RIVERSIDE AVENUE SITE NEWARK, NJ

Prepared for

U.S. Environmental Protection Agency Region 2

USEPA Facilities Raritan Depot Woodbridge, NJ 08837-3679

Prepared by

Tetra Tech EM Inc.

7 Creek Parkway, Suite 700 Boothwyn, Pennsylvania 19061

EPA Contract No. EP-S7-06-01

Technical Direction Document No. 0178 Document Tracking No. 1039

September 3, 2010

Prepared by

Kevin Scott Project Manager Approved by

Andy Mazzeo, START QA Manager

CONTENTS

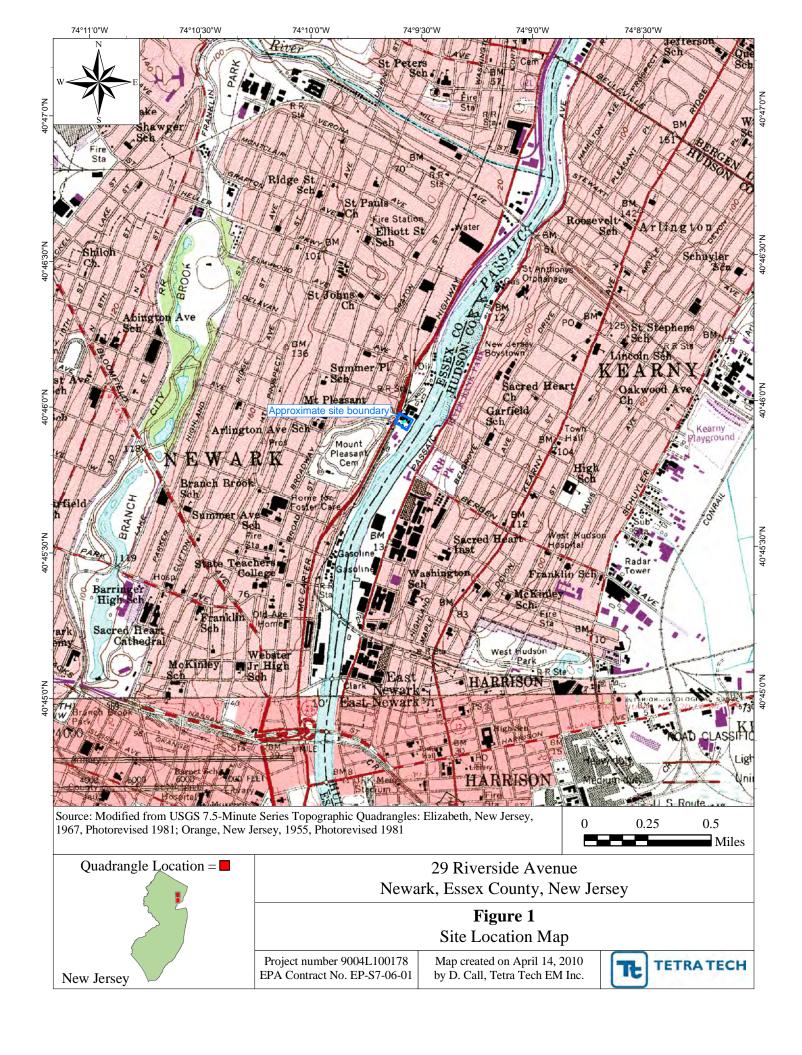
Sec	<u>tion</u>			Page
1.0	INTR	ODUCT	ION	1
2.0	BAC: 2.1 2.2 2.3	SITE L SITE H	ND LOCATION AND LAYOUT	1 4
3.0	OBJE	ECTIVE		6
4.0	REM 4.1 4.2	SCOPE MEDIA 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5	SSESSMENT ACTIVITIES	
	4.4 4.5		Storage/Process Tank Inventory and Sampling	
5.0	ANA 5.1 5.2 5.3 5.4 5.5 5.6	LYTICAL STORA DRUM BASEN RED A TAR M	L RESULTSAGE/PROCESS TANK SAMPLING RESULTS	31 34 35 40
6.0	SUM	MARY		45
7.0	REFE	ERENCES	S	48

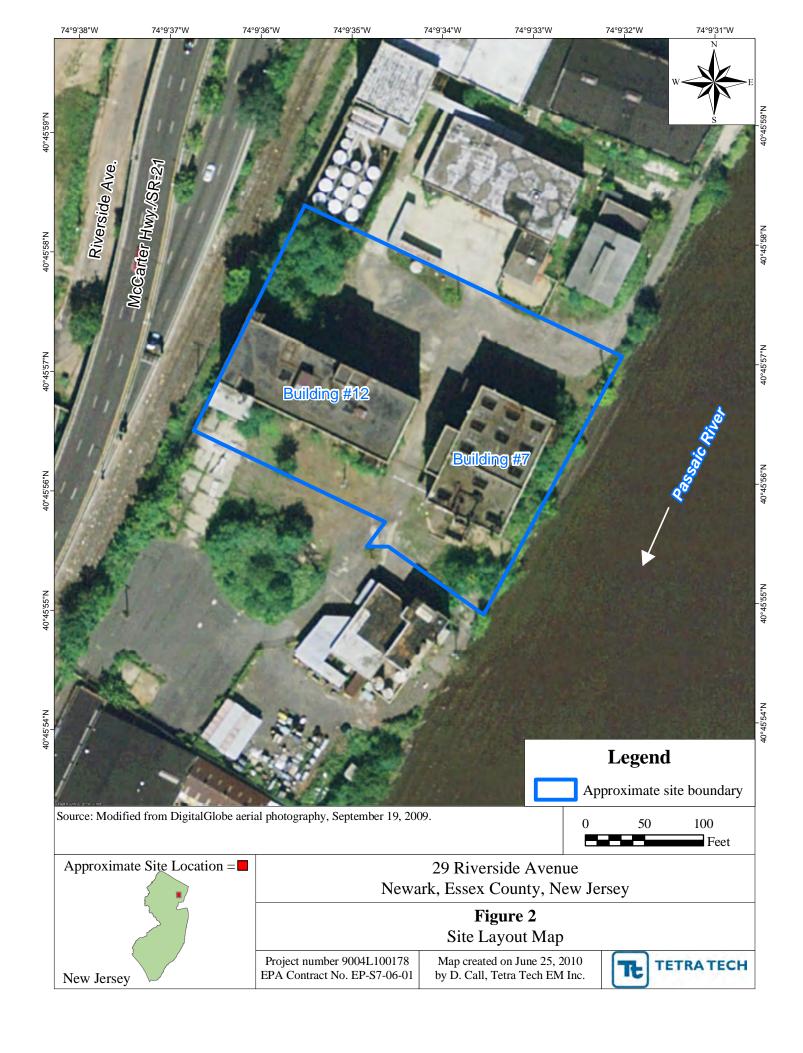
FIGURES

Figure 1 – Site Location Map	Page 2
Figure 2 – Site Layout Map	
Figure 3 – Building 7 Sampling Location Map, 3rd Floor	21
Figure 4 – Building 7 Sampling Location Map, 2nd Floor	22
Figure 5 – Building 7 Sampling Location Map, 1st Floor	24
Figure 6 – Building 12 Sampling Location Map, 1st Floor	25
Figure 7 – Building 12 Sampling Location Map, Basement	26
Figure 8 –Sampling Location Map, Building 12 4 th Floor	28
Figure 9 –Riverbank Sample	29
Figure 10 –Analytical Results, Building 7 3 rd Floor	32
Figure 12 –Analytical Results, Building 7 1st Floor	36
Figure 13 –Analytical Results, Building 12 1st Floor	37
Figure 14 –Analytical Results, Building 7 Sub-basement	39
Figure 15 -Analytical Results, Building 12 Basement	41
Figure 16 -Analytical Results, Building 12 4th Floor	42
Figure 17 –Analytical Results, Riverbank Sample	44
TABLES	
<u>Table</u>	Page
TABLE 1 AREAS OF CONCERN SUMMARY	5
TABLE 2 DRUM AND CONTAINER INVENTORY SUMMARY	9
TABLE 3 STORAGE/PROCESS TANK INVENTORY SUMMARY	12
TABLE 4 SAMPLE SUMMARY	16
Appendix	
A. FIELD LOGBOOK NOTES	
B. PHOTOGRAPHIC DOCUMENTATION LOG	
C. TRAFFIC REPORT AND CHAIN OF CUSTODY RECORDS	
D. ANALYTICAL SUMMARY TABLES	
ATTACHMENTS	
ATTACHMENT 1 - IGNITABILITY/CORROSIVITY TEST RESULTS	

ATTACHMENT 2 - ASBESTOS ANALYTICAL RESULTS REPORT

1.0 INTRODUCTION


Under Eastern Area Superfund Technical Assessment and Response Team (START) Contract No. EP-S7-06-01, Technical Direction Document (TDD) No. 0178, U.S. Environmental Protection Agency (EPA) Region 2 tasked Tetra Tech EM Inc. (Tetra Tech) to conduct a site removal assessment at the Riverside Avenue Site located at Riverside Avenue, off of Route 21 in Newark, New Jersey. This trip report describes the sampling activities that were conducted to support the assessment and summarizes the analytical results. This trip report provides site background information in Section 2.0; presents the project objective in Section 3, the removal assessment activities in Section 4, and the analytical results in Section 5. All references cited in this plan are listed in Section 6.0. Appendix A provides a copy of the field logbook notes; Appendix B provides photographic documentation of site activities and the traffic reports; chain-of-custody reports are included in Appendix C and the analytical summary tables are provided in Appendix D. The ignitability/corrosivity test results and asbestos analytical results reports are provided as attachments.


2.0 BACKGROUND

This section describes the site location, presents a description and history of the property, and summarizes previous investigation activities conducted on and in the vicinity of the Riverside Avenue Site.

2.1 SITE LOCATION AND LAYOUT

The Riverside Avenue Site is located off of Route 21 in Newark, New Jersey, as shown in Figure 1, Site Location Map. The geographic coordinates for the approximate center of the site are 40.4556 degrees north latitude and 74.0935 degrees west longitude. The site is currently owned by the City of Newark, NJ and is located at 29-47 Riverside Avenue, in a former industrial area adjacent to the Passaic River. The approximately 1.48 acre site is bordered to the east by the Passaic River, to the west by the N/F Erie-Lackawanna Railroad and McCarter Highway, NJ Route 21, and to the north and south by private buildings. The site is currently not in use and has been inactive since approximately 1993. Two multi-floored structures, identified as Building #7 (three-story) and Building #12 (five-story) are currently located on the site. Building #7 is located in the southern portion of the site, adjacent to the Passaic River. A current aerial view of the site can be seen on Figure 2, Site Layout Map.

2.2 SITE HISTORY

The site has been used for industrial activities since 1909. From 1909 through 1983, various operators utilized the property for the manufacture of paints and varnishes. From around 1931 through 1973, the property was a small part of a much larger facility owned and operated by Pittsburgh Paint & Glass Company. The property has been occupied by various operators from 1973 through 1993, when the current owner, the City of Newark obtained the property through foreclosure (Weston 2009).

2.3 PREVIOUS INVESTIGATIONS

In 2009, Weston Solutions was retained by the City of Newark Department of Economic Development and Housing to perform a preliminary assessment of the site. The preliminary assessment was completed to identify existing and/or potential areas of concern (AOC). Weston identified 11 AOCs during the preliminary assessment. After completion of the preliminary assessment, PMK Group, Inc. (Birdsall 2009) was retained by the Brick City Development Corporation to conduct an environmental site investigation (SI) for the property (Birdsall 2009). The SI was completed to address the conclusions and recommendations presented in the preliminary assessment report and to address issues regarding the planned redevelopment of the property, including the demolition of the two existing structures and site improvements including possibly the construction of a new facility. Given the site history, it was assumed that the SI would reveal environmental impacts above New Jersey Department of Environmental Protection (NJDEP) criteria; therefore, the SI strategy was to provide a "presence/absence" determination of environmental impacts expecting that an extensive remedial investigation would be required to delineate and define site conditions. Seven of these 11 AOCs identified in the preliminary assessment were investigated as part of the SI. The seven AOCs identified in the preliminary assessment and subsequently investigated in the SI are shown in Table 1 below.

TABLE 1 AREAS OF CONCERN SUMMARY

AOC Identifier	Description
AOC A-1	Above ground storage tanks and associated piping
AOC A-2	Underground storage tanks and associated piping
AOC A-3	Piping, above ground and below ground pumping stations, sumps and pits
AOC B-1	Storage pads; including drum and waste storage
AOC C-1	Floor drains, trenches and piping sumps
AOC D-1	Waste piles
AOC D-2	Open pipe discharges
AOC E-1	Electrical transformers and capacitors
AOC E-1A	Discolored or spill areas
AOC F-1	Loading or transfer areas
AOC G-1	Freight elevators

Notes: Shaded rows indicate AOCs that were investigated during SI.

AOC = Area of concern.

The SI field activities were completed between August and October 2009 and included a geophysical survey, collection of soil and groundwater samples and samples of basement water located within Building #7. The results of the geophysical survey indicated nine possible underground storage tanks (UST) located east of Building #12. Analytical results from soil samples collected from areas surrounding the identified AOCs indicated exceedances of NJDEP criteria for total petroleum hydrocarbons, volatile organic compounds (VOC), semivolatile organic compounds (SVOC), metals and polychlorinated biphenyls (PCBs). Two groundwater samples were collected from the site, one directly downgradient of AOC A-2 (location of USTs east of Building #12) and one collected west of Building #7, downgradient to AOC F-1 (the loading dock). Fingerprint analysis of the groundwater sample collected downgradient of AOC A-2 indicated the presence of mineral spirits and fuel oil No. 4. The groundwater sample collected downgradient of AOC F-1 indicated the presence of VOC, SVOC and metal exceedances of NJDEP groundwater quality criteria (GQC) for Class II-A aquifers. The basement water sampling results revealed VOCs, SVOCs, PCBs and metals exceeding the applicable NJDEP GQC for Class II-A aquifers.

PMK also investigated ten USTs identified east of Building #12. Nine of the tanks contained either liquid or sludge and one tank contained soil. Samples collected from the USTs were analyzed for priority pollutants (PP +40). Results showed benzene (up to 169 micrograms per liter [ug/L]), ethylbenzene (up to 12,100 ug/L), toluene (up to 77,000 ug/L), total xylene (up to 25,700 ug/L), and 2-butanone (up to 17,000 ug/L).

On October 29, 2009, NJDEP responded to an oil spill that stretched for a ¼-mile in the Passaic River. The source of the spill was identified at low tide when a pipe leaking black, viscous oil was exposed. The pipe was traced back to two above ground storage tanks located on the site in the basement of Building #12. The tanks were connected directly to a sewer line that eventually discharged into the Passaic River. NJDEP requested assistance from EPA to respond to the spill. The EPA Emergency and Rapid Response (ERRS) contractor secured the tanks and sewer line in the basement of Building #12 to prevent further discharge. Field screening results indicated that the oil was No. 4 heating oil. An estimated 500 gallons of No. 4 heating oil was spilled into the Passaic River during this incident.

Tetra Tech performed a site visit at the Riverside Avenue Site on April 7, 2010. Tetra Tech was accompanied by Dwayne Harrington, EPA Federal On-Scene Coordinator (OSC). The purpose of the visit was to document current site conditions and identify potential sampling areas. The visit confirmed the existence of several AOCs located within Buildings # 7 and #12 that were identified in the preliminary assessment. Most of the areas within the two buildings were accessible; however, some of the stairwells within the buildings were in various states of disrepair and neglect and were deemed inaccessible. These areas were avoided, pending assessors' ability to obtain alternative, safe means of mechanical access for any future assessments.

3.0 OBJECTIVE

The objective of this sampling event was to determine if hazardous substances are present in the following areas: (1) storage or process tanks located on the second and third floors of Building # 7; (2) drums found on the site; (3) waters and possibly residual solids that have collected in the basements of both Building #7 and Building # 12; (4) dry red and blue-colored pigment materials found on the fourth and fifth floors of Building #12 and; (5) pipe insulation observed in the onsite buildings. To address this objective, Tetra Tech collected samples from the following areas: (1) storage tanks, drums, carboys, and 5-gallon containers that contained product or waste; (2) water and sediment/sludge from the subbasement and basement of Building #7 and Building #12; (3) pigment material on the floor in Building #12, and (4) pipe insulation observed inside or outside both buildings. Additionally, Tetra Tech collected a composite sample of the tar/resin-like material that was observed leaching from the bank of the Passaic River and at the base of the northeast wall of Building #7 as well as a composite sample of the tar/resin-like material that was observed in the process lines and piping associated with the storage and process tanks. The determination to collect the tar/resin-like samples was made by the OSCs during the removal

assessment activities and these samples were not in the original draft Sampling and Analysis Plan (SAP) submitted by Tetra Tech.

4.0 REMOVAL ASSESSMENT ACTIVITIES

This section describes the scope of work; methods and procedures for sample collection, sample handling, and delivery to the approved laboratory; and equipment decontamination procedures.

4.1 SCOPE OF WORK

Tetra Tech completed the following tasks during this removal assessment:

- Inventoried and collected liquid and/or residual solid samples from tanks located on the second and third floors of Building #7.
- Collected aqueous and sediment samples from the basements of Buildings #7 and #12 where pooled water has accumulated.
- Inventoried and sampled drums and containers located on site.
- Collected samples of the red and blue-colored dry pigment materials located on the floor of Building #12.
- Obtained 12 bulk asbestos samples from the pipe insulation located inside and outside of site buildings.
- Collected samples of the tar/resin-like materials leaching from the west bank of the Passaic River and observed along the base of the north wall of Building #7.
- Submitted trip and field blanks for quality assurance (QA) and quality control (QC) purposes.
- Photo documented sampling activities and sampling locations.
- Packaged and shipped samples to laboratories procured through the EPA contract laboratory program (CLP) for target compound list (TCL) and Toxicity Characteristics Leaching Procedure (TCLP) VOCs, SVOCs, pesticides, and PCBs and target analyte list (TAL) and TCLP metals and cyanide.

4.2 MEDIA SAMPLE COLLECTION PROCEDURES

This section describes the general procedures that were implemented during the collection of the tank, drum, basement water and sediment, and asbestos samples discussed in this report. The field work was implemented in accordance with the requirements of a site-specific health and safety plan (HASP) prepared to comply with the requirements of Code of Federal Regulations

(CFR) 1910.120 and the Tetra Tech draft sampling and analysis plan (SAP) for the site (Tetra Tech 2010). Tetra Tech documented site activities in accordance with Tetra Tech Standard Operating Procedure (SOP) No. 024, "Recording of Notes in Field Logbook" (Tetra Tech 2008a). A copy of field log book notes is provided in Appendix A. Photographs taken during the field activities are provided in Appendix B.

4.2.1 Storage/Process Tank Inventory and Sampling Procedures

Prior to sampling, Tetra Tech inspected each storage/process tank to determine if liquid or sludge was present in the tank and then numbered each tank and recorded this information on a field data sheet. This information is provided in Table 2. Scaffolding was rented from a local vendor and erected next to the tanks to facilitate the inspection and sample collection activities. After inspecting the tanks, Tetra Tech determined that fewer samples than originally proposed in the SAP were necessary to adequately assess the contents of the tanks. Tetra Tech also determined that the proposed field hazard characterization testing on these samples was not necessary.

Liquid and sludge inside the storage/process tanks located on the third floor of Building #7 was collected by tying a string to a dedicated sample collection container and lowering the container into the tank being sampled. Initial attempts to collect samples from the tanks using a Sludge Judge® and a fabricated dipper proved unsuccessful. Samples collected from the storage/process tanks were then transferred into clean sample jars and labeled as detailed in the site-specific SAP.

4.2.2 Drum, Carboy, and Container Inventory and Sampling Procedures

Prior to sampling, Tetra Tech inspected each drum, carboy, and 5 gallon plastic or metal container to determine if liquid, sludge, or solid waste was present in the container and then numbered each waste containing container according the sample identification format specified in the draft SAP. This information was recorded on a field data sheet and is presented in Table 3. After completing the inspection, Tetra Tech personnel determined that fewer samples would need to be collected from the drums, carboys, and containers than previously anticipated and that the need to consolidate samples as well as perform field hazard characterization testing on these samples was not necessary.

Liquid, sludge, or solid wastes present in the drums and containers were collected using dedicated drum thieves, coliwasa samplers, or plastic scoops, depending on the matrix and consistency of the material in the container. Drum and container samples were collected in accordance with Tetra Tech SOP No. 008, "Containerized Liquid, Sludge, or Slurry

TABLE 2
DRUM AND CONTAINER INVENTORY SUMMARY

				% Container	Physical				Sample	
Container	Type	Тор	Condition	Full	State	Bldg#	Floor #	Room	Collected	Sample ID
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bung	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	95%	Solid	12	1	west	Yes	B12-DS-01
55-GAL	Steel 17H	Bolt ring	Fair	95%	Solid	12	1	west	Yes	B12-DS-02
5-GAL	metal	spout	Poor	40%	Liquid	12	1	west	Yes	B12-PS-01
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Poly	Latch ring	Poor	65%	Solid	7	2	North	Yes	B7-CS-03
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	North	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	North	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	North	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	North	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	South	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	Stairwell	No	NA
55-GAL	Steel 17H	Bolt ring	Poor	50%	Sludge	7	1	North	Yes	B7-DS-02
55-GAL	Steel 17H	Bolt ring	Poor	50%	Solid	7	1	South	Yes	B7-DS-01
5-GAL	Poly	spout	Fair	40%	Liquid	7	1	Stairwell	Yes	B7-CS-02
5-GAL	Fiber	Latch ring	Poor	70%	Solid	7	1	Stairwell	Yes	B7-PS-03
5-GAL	metal	spout	Poor	Empty	NA	7	1	Stairwell	No	NA
5-GAL	Poly	lid	Poor	40%	Liquid	7	1	Freight Elevator	Yes	B7-PS-01

TABLE 2
DRUM AND CONTAINER INVENTORY SUMMARY

				% Container	Physical				Sample	
Container	Type	Тор	Condition	Full	State	Bldg #	Floor #	Room	Collected	Sample ID
5-GAL	Poly	spout	Fair	55%	Liquid	7	1	North	Yes	B7-PS-02
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bung	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17H	Bolt ring	Fair	95%	Solid	12	1	west	Yes	B12-DS-01
55-GAL	Steel 17H	Bolt ring	Fair	95%	Solid	12	1	west	Yes	B12-DS-02
5-GAL	metal	spout	Poor	40%	Liquid	12	1	west	Yes	B12-PS-01
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
55-GAL	Steel 17E	Bolt ring	Fair	Empty	NA	12	1	west	No	NA
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
5-GAL	metal	spout	Fair	Empty	NA	12	1	west	No	NA
30-GAL	Poly	Latch ring	Poor	65%	Solid	7	2	North	Yes	B7-CS-03
55-GAL	Steel 17H	Bolt ring	Poor	Empty	NA	7	1	North	No	NA

Notes: B7 = Building #7

B12 = Building #12 CS = Container sample DS = Drum sample

Gal = gallon NA = Not applicable PS = pail sample 17-H = open top drum 17-E = closed top drum Sampling." (Tetra Tech 2000a). At each of the sampling locations, Tetra Tech filled two certified-clean, 4-ounce clear wide-mouth (CWM) glass jars with Teflon lined septa lids for TCL and TCLP VOCs and six certified-clean 8-ounce CWM glass jars with Teflon lined lids for TAL total metals and cyanide, aroclors, TCLP SVOC, TCLP metals, TCLP pesticides and herbicides, and ignitibility and corrosivity analyses.

4.2.3 Buildings # 7 and # 12 Basement Sampling Procedures

Tetra Tech collected aqueous samples of the pooled water in the subbasement and basement of Buildings #7 and #12, respectively. Tetra Tech collected the aqueous sample in the basement of Building #12 by submerging the bottleware below the surface of the water in accordance with SOP No. 009, "Surface Water Sampling" (Tetra Tech 2009a). Tetra Tech collected the aqueous sample in the subbasement of Building #7 using a Sludge Judge® and then transferred the sample into the appropriate sample bottleware. Tetra Tech also collected sediment samples at each of the same locations where aqueous samples were collected. Sediment samples were collected in accordance with Tetra Tech SOP No. 006 "Sludge and Sediment Sampling" (Tetra Tech 2000b). Initial attempts to collect sediment samples from the subbasement of Building #7 using a Sludge Judge® proved unsuccessful, so Tetra Tech personnel fabricated a dipper using an aluminum pole and dedicated sample collection container to obtain the samples. Samples collected from the basement sump in Building #12 and subbasement of Building #7 were then transferred into clean sample jars and labeled according to the draft SAP.

4.2.4 Sampling of Red and Blue-Colored Pigments Located in Building #12

Tetra Tech collected samples of the red and blue-colored pigments observed on the floors of Building #12. Approximately ½ inch of dry pigment material had accumulated immediately beneath the openings of two funnel tanks that protruded from the ceiling of the fourth floor of Building #12. The samples were collected using dedicated, disposal plastic scoops. Pigment material was scraped into a pile with the plastic scoop and then scooped and transferred directly into the appropriate sample containers. The pigment material was mixed with debris and what appeared to be bird droppings and a pure sample of the pigment material could not be obtained. Nearly all of the blue and red pigment that was present was placed into sample containers and only residue remained at the site after sample collection.

TABLE 3 STORAGE/PROCESS TANK INVENTORY SUMMARY

											Partitione	d Tanks		
Tank Number	Partitioned (Y/N)	Floor (2 or 3)	Room (N or S)	Tank Type (rectangular/Conical)	Height (ft.)	Length (ft.)	Width (ft.)	Radius (ft.)	tank capacity (cubic ft)	tank capacity (gallons)	est. tank capacity of each partition (cubic ft)	est. tank capacity in each partition (gallons)	Product level in tank (inches)	est. product volume (gallons)
1	No	3	North	Rectangular	8	6	4.5	NA	216	1616			2	
2	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	2	
3	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	2	
4	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	2	
5	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
6	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
7	No	3	North	Rectangular	10.5	6	4	NA	252	1885			Empty	
8	No	3	North	Rectangular	10.5	6	4	NA	252	1885			Empty	
9	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
10	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
11	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
12	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
13	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
14	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	12"-20"	100
15	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
16	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
17	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
18	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	2"	
19	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
20	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
21	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
22	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
23	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
24	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
25	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
26	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
27	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
28	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
29	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
30	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
31	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
32	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
33	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
34	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
35	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
36	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
37	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
38	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
39	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	

TABLE 3 STORAGE/PROCESS TANK INVENTORY SUMMARY

											Partitione	d Tanks		
Tank Number	Partitioned (Y/N)	Floor (2 or 3)	Room (N or S)	Tank Type (rectangular/Conical)	Height (ft.)	Length (ft.)	Width (ft.)	Radius (ft.)	tank capacity (cubic ft)	tank capacity (gallons)	est. tank capacity of each partition (cubic ft)	est. tank capacity in each partition (gallons)	Product level in tank (inches)	est. product volume (gallons)
40	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
41	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
42	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
43	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
44	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
45	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
46	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
47	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
48	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
49	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
50	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
51	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	12	
52	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	36	350 (A) / 270 (B)
53	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
54	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
55	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
56	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
57	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
58	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
59	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
60	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
61	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
62	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
63	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
64	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
65	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
66	Yes	3	North	Rectangular	10.5	6	4	NA	252	1885	126	943	Empty	
67	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
68	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
69	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
70	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
71	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
72	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
73	No	3	North	Rectangular	10.5	6	4.5	NA	284	2121			Empty	
1	No	3	South	Conical	7	NA	NA	3.25	232	1738			Empty	
2	No	3	South	Conical	7	NA	NA	3.25	232	1738			Empty	
3	No	3	South	Conical	7	NA	NA	2	88	658			Empty	
4	No	3	South	Conical	4	NA	NA	2.5	79	588			Empty	
5	No	3	South	Conical	4	NA	NA	2.5	79	588			12	150

TABLE 3 STORAGE/PROCESS TANK INVENTORY SUMMARY

											Partitione	d Tanks		
Tank Number	Partitioned (Y/N)	Floor (2 or 3)	Room (N or S)	Tank Type (rectangular/Conical)	Height (ft.)	Length (ft.)	Width (ft.)	Radius (ft.)	tank capacity (cubic ft)	tank capacity (gallons)	est. tank capacity of each partition (cubic ft)	est. tank capacity in each partition (gallons)	Product level in tank (inches)	est. product volume (gallons)
6	No	3	South	Conical	7	NA	NA	2	88	658			Empty	
7	No	3	South	Conical	7	NA	NA	3.25	232	1738			Empty	
8	No	3	South	Conical	7	NA	NA	3.25	232	1738			Empty	
9	No	3	South	Rectangular	8	6	4.5	NA	216	1616			6" - 12"	200
10	No	3	South	Rectangular	8	6	4.5	NA	216	1616			6" - 12"	200
11	No	3	South	Rectangular	6.5	7	4.5	NA	205	1532			tarp/fabric	
12	No	3	South	Conical	7	NA	NA	3.25	232	1738			Empty	
13	No	3	South	Conical	7	NA	NA	2	88	658			Empty	
14	No	3	South	Conical	4	NA	NA	2.5	79	588			Empty	
15	No	3	South	Conical	4	NA	NA	2.5	79	588			Empty	
16	No	3	South	Conical	7	NA	NA	2	88	658			Empty	
17	No	3	South	Rectangular	7.5	8	4.5	NA	270	2020			3/4 full	1500
18	No	3	South	Rectangular	7.5	8	4.5	NA	270	2020			Full	2000
19	No	3	South	Rectangular	7.5	8	4.5	NA	270	2020			Full	2000
20	No	3	South	Rectangular	7.5	8	4.5	NA	270	2020			Empty	
1	No	2	South	Rectangular	8	8.5	7	NA	476	3561			Empty	
2	No	2	South	Rectangular	8	8.5	7	NA	476	3561			Empty	
3	No	2	South	Rectangular	8	8.5	7	NA	476	3561			Empty	
4	No	2	South	Rectangular	8	8.5	7	NA	476	3561			Empty	
5	No	2	South	Rectangular	8	8.5	7	NA	476	3561			Empty	
6	No	2	South	Rectangular	8	6	4	NA	192	1436			Empty	
7	No	2	South	Rectangular	8	6	4	NA	192	1436			Empty	
8	No	2	South	Rectangular	8	6	4	NA	192	1436			Empty	
9	No	2	South	Rectangular	8	6	4	NA	192	1436			Empty	
10	No	2	South	Rectangular	8	6	4	NA	192	1436			Empty	

4.2.5 Asbestos-Form and Potential Asbestos Containing Material Sampling

Tetra Tech collected samples of pipe insulation contained in both Buildings # 7 and # 12. Tetra Tech collected bulk samples through a glove bag, in accordance with Code of Federal Regulations Title 40, Part 763.86 "Asbestos Sampling" (EPA 1987). The sample points on the insulation were wetted with amended water and a section no greater than 3 square inches was removed from the sample point and placed in resealable plastic bags. The samples were removed from the glove bag by placing it in the glove, pulling the glove inside out, taping the glove and cutting it away from the glove bag with scissors. The glove bag was wrapped and secured to the pipe with tape around the sampling point. Disposable sampling equipment was utilized at each sampling point in order to minimize the spread of asbestos fibers and cross-contamination.

4.3 SAMPLING SUMMARY

This section describes the quantities and analyses of samples collected from the tanks, drums, basement water and sediment, and asbestos discussed in Section 4.2 above.

4.3.1 Storage/Process Tank Inventory and Sampling

Tetra Tech collected a total of 10 samples from the tanks of the third floor of Building #7, including one duplicate sample. Tetra Tech also collected one sample from the tank No. 9 on the second floor of Building #7 and a composite sample of the resin-like material that was present in the tank process lines and pipes. A sampling summary is presented in Table 4. Photographs of the tanks and Tetra Tech sampling activities are provided in the Appendix B. Figures 3 and 4 show the locations of the tank samples on the third and second floor, respectively. At each of the sampling locations, Tetra Tech filled two certified-clean, 4-ounce CWM glass jars with Teflon lined septa lids for TCL VOCs and TCLP VOCs and six certified-clean 8-ounce CWM glass jars with Teflon lined lids for TAL metals and cyanide, aroclors, TCLP SVOC, TCLP metals, TCLP pesticides and herbicides, and ignitibility and corrosivity analyses.

			Sample	Sample			Date			Comment	s	
Sample ID	Lab ID	Matrix	Date	Time	Analysis Name	Laboratory	Shipped	Sample Type	Container type	Bldg. #	Floor	Location
								QC sample - trip				
RAS-TB-01	B0033	Water	6/9/2010	8:07:00 AM	CLP TCL Volatiles	A4 Scientific	6/10/2010	blank				
					CLP TCL Volatiles			QC sample - field				
RAS-FB-01	B0031	Water	6/9/2010	8:12:00 AM	CLP TCL Semivolatiles and Pesticides/PCBs	A4 Scientific	6/10/2010	blank				
BUILDING #	7 TANK SAMPLE	S										
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0029 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0029				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-53A	B7-TM-53A	Waste	6/8/2010	11:00:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	N
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0025 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0025				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-19	B7-TM-19	Waste	6/8/2010	12:45:00 PM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	S
					CLP TCL Volatiles							
	*				PCBs(AROCLORS)							
	B0024 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010	=				
	7.50004				CLP TAL Total Metals and Cyanide							
	MB0024				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
D. T. T. 10	D5 50 4 40	***	5/0/2010	12 20 00 73 5	Corrosivity (pH)	77.607		F: 110		_		
B7-TM-18	B7-TM-18	Waste	6/8/2010	12:30:00 PM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	S
					CLP TCL Volatiles							
	D0000 †				PCBs(AROCLORS)	A 4 G · · · · · · · ·	1/10/2010					
	B0023 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
	MD0022				CLP TAL Total Metals and Cyanide	Daniel And Lind Torking Commen	c/11/2010					
D7 TM 17	MB0023	XX 7 4 -	6/0/2010	12.15.00 DM	TCLP Metals	Bonner Analytical Testing Company	6/11/2010	F'-14 C1-	in to an A C/T	7		C
B7-TM-17	B7-TM-17	Waste	6/8/2010	12:15:00 PM	Corrosivity (pH), ignitability	EMSL	6/14/2010	Field Sample	indoor AST	/	3	S
					CLP TCL Volatiles							
	D0022				PCBs (aroclors)	A 4 S =: = = 4:5: =	6/10/2010					
	B0022				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides CLP TAL Total Metals and Cyanide	A4 Scientific	6/10/2010					
	MB0022				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
	MBUUZZ				Corrosivity (pH)	Bonner Anarytical Testing Company	6/11/2010					
B7-TM-14B	B7-TM-14B	Waste	6/8/2010	10:05:00 AM	Ignitability	EMSL	C/14/2010	Field Sample	indoor AST	7	3	N
D/-1W-14D	D/-1WI-14D	vv aste	0/8/2010	10.03.00 AW	CLP TCL Volatiles	EMSL	6/14/2010	rieid Sample	IIIdool AS I	/	3	IN
					PCBs (aroclors)	1						
	B0021				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
	D 0021				CLP TAL Total Metals and Cyanide	AT SCICIUM	0/10/2010	-				
	MB0021				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
	1/10/02/1				Corrosivity (pH)	Donner Anarytical Testing Company	0/11/2010	=				
B7-TM-14A	B7-TM-14A	Waste	6/8/2010	9:50:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	N
D, 1141 17/1	D/ 11/1 17/1	11 4510	0/0/2010	7.50.007111	1511111011117	LINE	0/17/2010	1 Icia bampie	macor rior			11

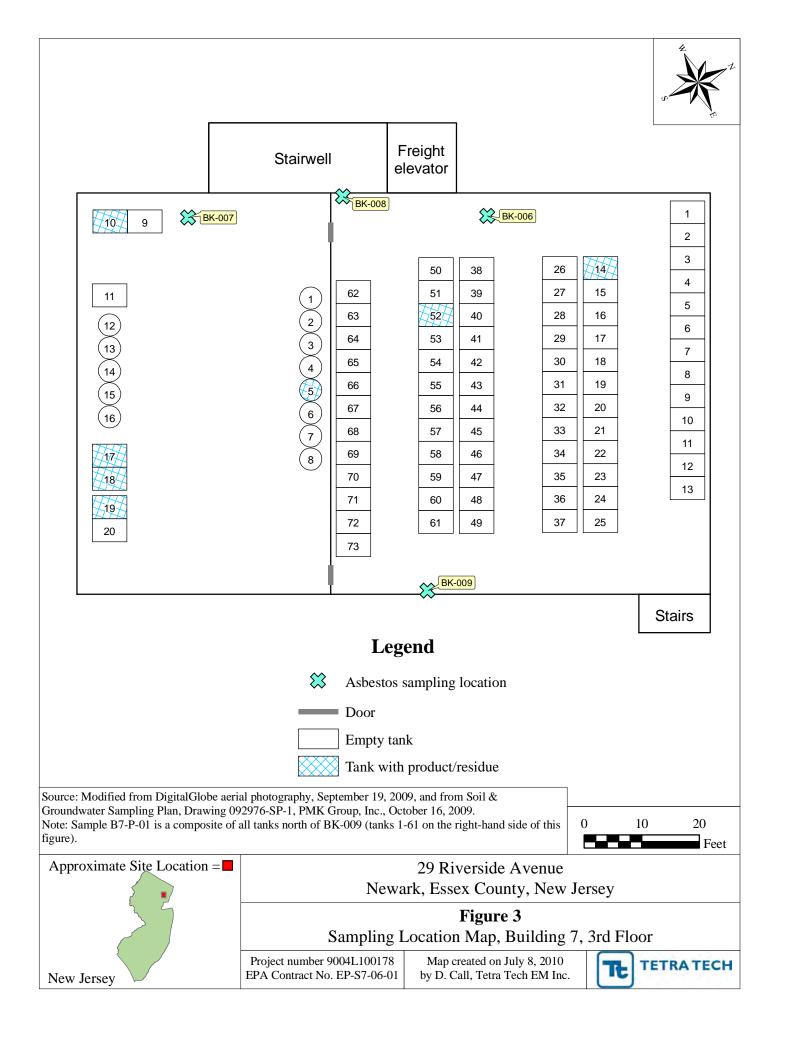
			Sample	Sample			Date			Comments	<u> </u>	
Sample ID	Lab ID	Matrix	Date	Time	Analysis Name	Laboratory	Shipped	Sample Type	Container type	Bldg. #	Floor	Location
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0020				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0020				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-10	B7-TM-10	Waste	6/8/2010	1:30:00 PM	Ignitability	EMSL	6/14/2010	Dupl. of B7-TM-09	indoor AST	7	3	S
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0019				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0019				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-09-2S	B7-TM-09-2S	Waste	6/8/2010	2:30:00 PM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	2	S
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0018				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0018				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-09	B7-TM-09	Waste	6/8/2010	1:34:00 PM	Ignitability	EMSL	6/14/2010	Dupl. of B7-TM-10	indoor AST	7	3	S
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0017 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0017				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-05	B7-TM-05	Waste	6/8/2010	1:15:00 PM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	S
BUILDING #7	DRUM,CARBO	Y,CONTAINER	SAMPLES									
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0040				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
B7-DS-02	MB0040	Waste	6/9/2010	2:09:00 PM	TCLP Metals	Bonner Analytical Testing Company	6/11/2010	Field Sample	Drum	7	1	N
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0035				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0035				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-DS-01	B7-DS-01	Waste	6/9/2010	9:40:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	Drum	7	1	S

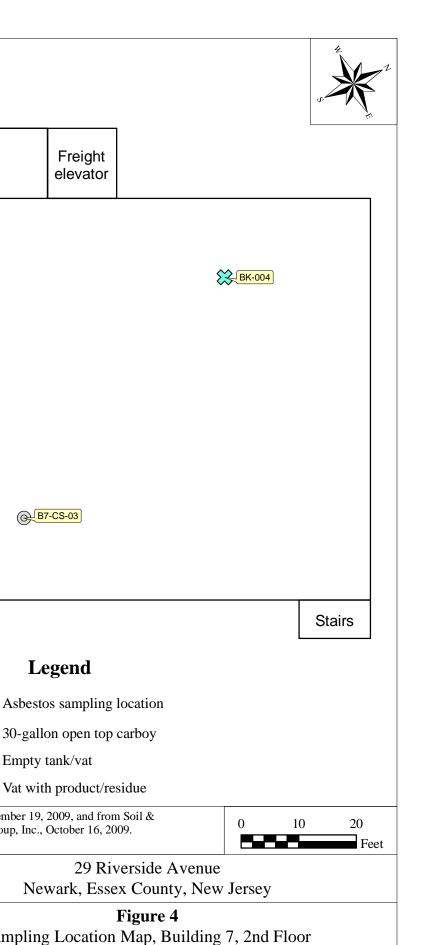
			Sample	Sample			Date		C	omment	S	
Sample ID	Lab ID	Matrix	Date	Time	Analysis Name	Laboratory	Shipped	Sample Type	Container type	Bldg.#	Floor	Location
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0034				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0034				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)				30-gallon carboy			
B7-CS-03	B7-CS-03	Waste	6/9/2010	9:56:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	drum (open top)	7	2	N
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0043 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0043 **				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
	B7-CS-02			11:27:00 AM		EMSL	6/14/2010		5-gallon plastic			
B7-CS-02	MB0045	Waste	6/17/2010	10:00:00 AM	TCLP Metals and Hg	Bonner Analytical Testing Company	6/17/2010	Field Sample	container	7	1	stairwell
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0042				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0042				TCLP Metals	Bonner Analytical Testing Company						
					Corrosivity (pH)		6/14/2010		5-gallon cardboard			
B7-PS-03	B7-PS-03	Waste	6/9/2010	11:54:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	container	7	1	stairwell
					CLP TCL Volatiles							
	7.002.1 *				PCBs (aroclors)							
	B0036 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0036				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
			1/0/2010		Corrosivity (pH)				5-gallon plastic	_		
B7-PS-02	B7-PS-02	Waste	6/9/2010	10:33:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	container	7	1	N
					CLP TCL Volatiles							
	D0027 †				PCBs (aroclors)							
	B0037 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
	MD0027				CLP TAL Total Metals and Cyanide	D A 1 (1 1 T (1 C	-/11/2010					
	MB0037				TCLP Metals	Bonner Analytical Testing Company	6/11/2010		, II 1 .:			
D7 DC 01	D7 DC 01	XX 7	6/0/2010	11.04.00 434	Corrosivity (pH)	EMCI	6/14/2010	E'-11 C1-	5-gallon plastic	7		Est Els
B7-PS-01	B7-PS-01	Waste	6/9/2010	11:04:00 AM	CLP TCL Volatiles	EMSL	6/14/2010	Field Sample	container	/	1	Frt. Elev.
D7 TAD 01	D0016	Wests	6/9/2010	2.45.00 DM	CLP TCL Volatiles CLP TCL Semivolatiles and Pesticides/PCBs	A 4 S =:4: S: -	6/10/2010	Field Sample	NIA	7	1	N
B7-TAR-01	B0016	Waste	6/8/2010	2:45:00 PM	CLP TCL Semivolatiles and Pesticides/PCBs CLP TCL Volatiles	A4 Scientific	6/10/2010	Field Sample	NA	/	1	N
	B0044				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides PCBs (aroclors)	A4 Scientific	C/10/2010					
	D UU44				CLP TAL Total Metals and Cyanide	A4 SCIEIUIIC	6/10/2010	-				
	MB0044				TCLP Metals TCLP Metals	Bonner Analytical Testing Company	C/11/2010					
	WIDUU44				Corrosivity (pH)	Bonner Anarytical Testing Company	6/11/2010	-				
P7 P 01	P7 P 01	Wests	6/9/2010	2.15.00 DM	Ignitability	EMSI	6/14/2010	Field Sample	nino composito	7		
B7-P-01	B7-P-01	Waste	0/9/2010	3:15:00 PM	rginaointy	EMSL	6/14/2010	rieid Sampie	pipe composite	/		

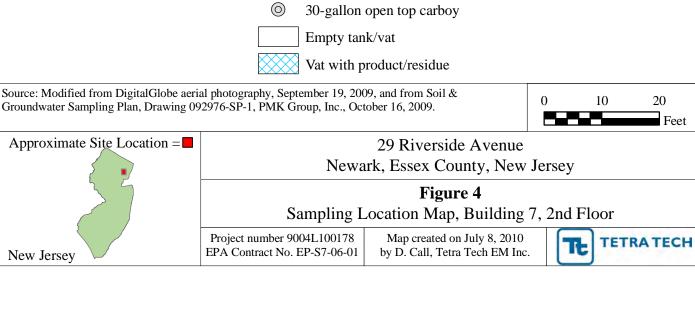
			Sample	Sample			Date		(Comment	s	
Sample ID	Lab ID	Matrix	Date	Time	Analysis Name	Laboratory	Shipped	Sample Type	Container type	Bldg. #	Floor	Location
BUILDING #1	12 DRUM AND	CONTAINER SAMP	PLES									
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0007 [†]				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0007				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B12-PS-01	B12-PS-01	Oil(High only)	6/8/2010	9:20:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	5-gallon metal can	12	1	
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0002				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0002				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B12-DS-02	B12-DS-02	Waste	6/8/2010	9:15:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	Drum	12	1	
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0008				TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0008				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B12-DS-01	B12-DS-01	Waste	6/8/2010	9:15:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	Drum	12	1	
PIGMENT MA	ATERIAL SAM	PLES		1								
					CLP TCL Volatiles							
	B0006				CLP TCL Semivolatiles and Pesticides/PCBs	A4 Scientific	6/10/2010					
	MB0006				CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B12-PM-02	B12-PM-02	Waste	6/8/2010	10:10:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	pigment material	12	4	
					CLP TCL Volatiles							
	B0005				CLP TCL Semivolatiles and Pesticides/PCBs	A4 Scientific	6/10/2010					
	MB0005				CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B12-PM-01	B12-PM-01	Waste	6/8/2010	10:05:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	pigment material	12	4	
BUILDING #7	BASEMENT S.	AMPLES		1	CALD MOVE OF THE LAND AND THE PARTY OF THE P	Ţ			1	1	1	
D5 D11 05	D0012		4/0/5015	44.00.00.13	CLP TCL Semivolatiles and Pesticides/PCBs	1		D 1 0D= ================================	1.	_		sub-
B7-BW-03	B0012	Basement Water	6/8/2010	11:20:00 AM	CLP TCL Volatiles	A4 Scientific	6/10/2010	Dupl. of B7-BW-01	basement water	7	1	basement
D5 D11: 05	D0010		- 10 1 5 0 1 5	40 45 00 77 -	CLP TCL Volatiles	1		T: 11 G	1.	_		sub-
B7-BW-02	B0010	Basement Water	6/8/2010	12:15:00 PM	CLP TCL Semivolatiles and Pesticides/PCBs	A4 Scientific	6/10/2010	Field Sample	basement water	7	1	basement
					CLD MCL CL 1 LL 1D LL 1 DCD							
D7 DW 01	D0002	D . 337 .	6/0/2016	11 17 00 13 7	CLP TCL Semivolatiles and Pesticides/PCBs			D 1 CDE DWGG		_		sub-
B7-BW-01	B0003	Basement Water	6/8/2010	11:15:00 AM	CLP TCL Volatiles	A4 Scientific	6/10/2010	Dupl. of B7-BW-03	basement water	7	1	basement
					CLP TCL Semivolatiles and Pesticide							
	D0015				CLP TCL Volatiles							
DZ GED 04	B0015	0 1: ./01 1	6/0/2010	10 20 00 73 5	PCBs (aroclors)	A4 Scientific	6/10/2010	E: 110 1	1	_		
B7-SED-04	MB0015	Sediment/Sludge	6/8/2010	12:30:00 PM	CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010	Field Sample	basement sediment	7	1	S

			Sample	Sample			Date		Comments		S	
Sample ID	Lab ID	Matrix	Date	Time	Analysis Name	Laboratory	Shipped	Sample Type	Container type	Bldg. #	Floor	Location
					CLP TCL Semivolatiles and Pesticides							
					CLP TCL Volatiles							
	B0014				PCBs (aroclors)	A4 Scientific	6/10/2010					
	MB0014				CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-SED-03	B7-SED-03	Sediment/Sludge	6/8/2010	11:50:00 AM	Ignitability	EMSL	6/14/2010	Dup of B7-SED-02	basement sediment	7	1	S
					CLP TCL Semivolatiles and Pesticides							
					CLP TCL Volatiles							
	B0013				PCBs (aroclors)	A4 Scientific	6/10/2010					
	MB0013				CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-SED-02	B7-SED-02	Sediment/Sludge	6/8/2010	11:45:00 AM	Ignitability	EMSL	6/14/2010	Dup of B7-SED-03	basement sediment	7	1	S
BUILDING #1	12 BASEMENT	SAMPLES										
					CLP TCL Semivolatiles and Pesticides/PCBs		ļ			l		
B12-AQ-01	B0004	Surface Water	6/8/2010	9:40:00 AM	CLP TCL Volatiles	A4 Scientific	6/10/2010	Field Sample	basement water	12	В	
					CLP TCL Semivolatiles and Pesticides/PCBs					l		
					CLP TCL Volatiles							
	B0009				PCBs (aroclors)	A4 Scientific	6/10/2010					
B12-SED-01	MB0009	Basement Sediment	6/8/2010	9:45:00 AM	CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010	Field Sample	basement sediment	12	В	
TAR SAMPL	ES											
					CLP TCL Volatiles							
					PCBs (aroclors)							
Riverbank-1	B0041			2:00:00 PM	TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010	Field Sample	NA	NA	NA	
					CLP TAL Total Metals and Cyanide	Bonner Analytical Testing Company	6/11/2010					
	MB0041	Solid	6/9/2010		TCLP Metals							
					CLP TCL Volatiles							
					PCBs (aroclors)							
	B0030 [†]) [†]			TCLP Volatiles, Semivolatiles, Pesticides and Herbicides	A4 Scientific	6/10/2010					
					CLP TAL Total Metals and Cyanide							
	MB0030				TCLP Metals	Bonner Analytical Testing Company	6/11/2010					
					Corrosivity (pH)							
B7-TM-53B	B7-TM-53B	Waste		11:15:00 AM	Ignitability	EMSL	6/14/2010	Field Sample	indoor AST	7	3	N
	ASBESTOS CO	ONTAINING MATER						1		•		
BK-001		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	1	
BK-002		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	1	
BK-003		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	1	
BK-004		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	2	N
BK-005		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	2	S
BK-006		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	3	N
BK-007		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	3	S
BK-008		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	3	
BK-009		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7	3	N
BK-010		pipe insulation	6/9/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		12		
BK-011		pipe insulation	6/8/2010		Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7		
BK-012		pipe insulation	6/8/2010	2:40:00 PM	Asbestos, PLM - Bulk (EPA 600/R-93/116 (<1%)	EMSL	6/14/2010	Field Sample		7		
Notes:												

Notes:
† = insufficient sample volume for AROCLORS analysis
†† = broken sample jar. No sample volume remaining for analysis
B7 = Building #7


B12 = Building #12 CLP = Contract Laboratory Program FB = Field Blank


ID= identification NA = Not applicable PCB – polychlorinated biphenyl


PLM = polarized light microscopy QC = quality control SED = sediment

TAL = Target Analyte list
TB = Trip blank
TCLP = Toxicity Characteristics Leaching Procedure

TM = Tank material

Stairwell

RAS-B7-TM-09-2S

BK-005

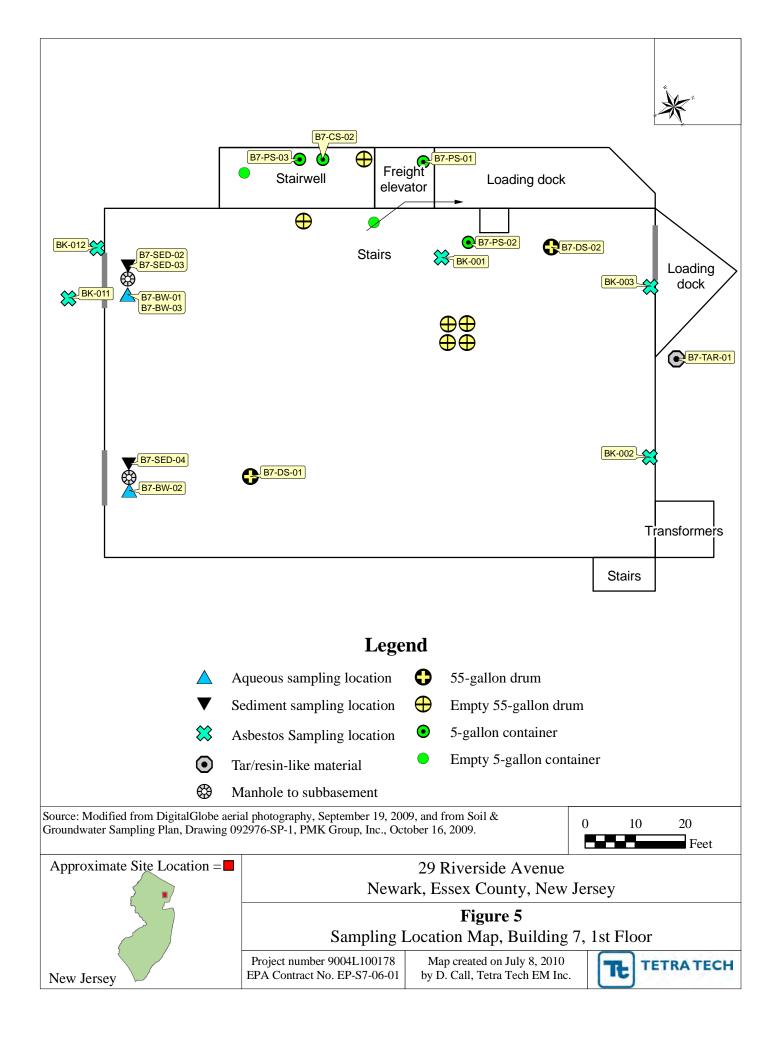
 \approx

7 8

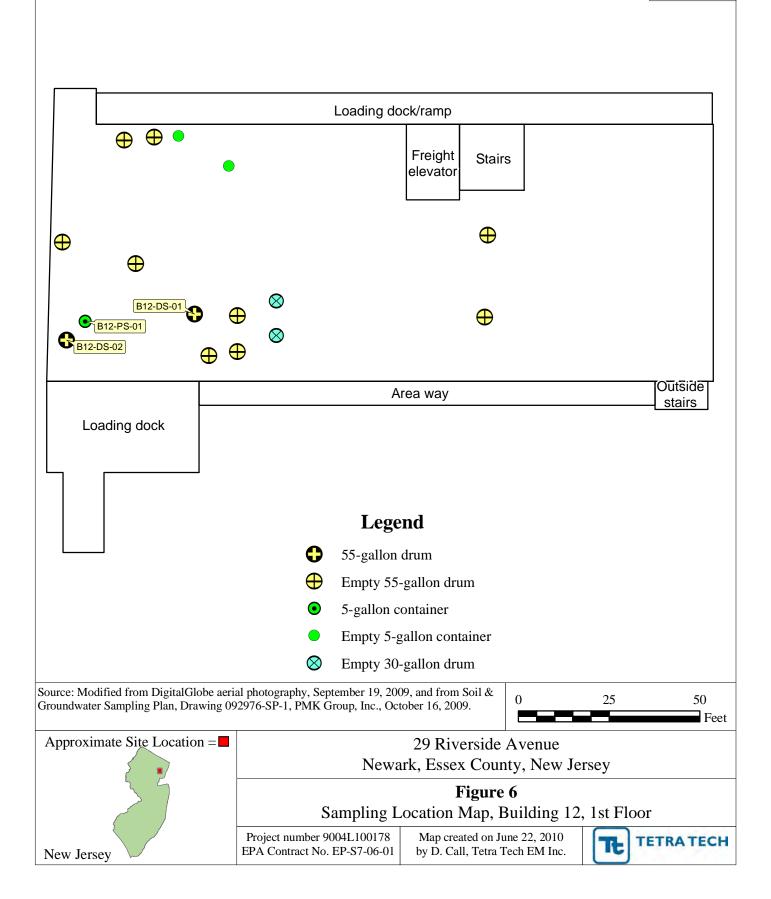
5

3

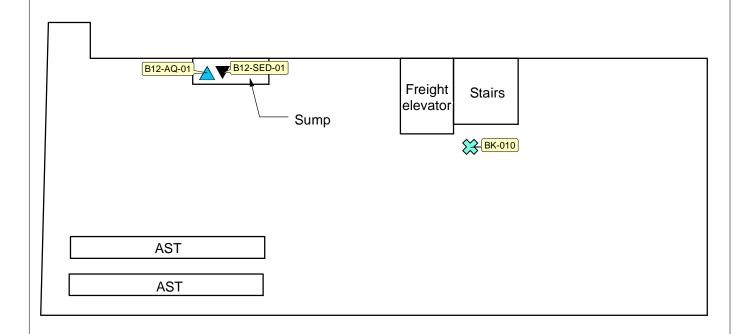
2

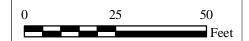

1

4.3.2 Drum, Carboy, and Container Inventory and Sampling


Tetra Tech collected one solid waste sample from the one 30-gallon carboy located on the second floor of Building #7 and one solid waste and six liquid waste samples from drums and containers located on the first floor of Building #7. Additionally, Tetra Tech collected two solid waste samples from the two drums located on the first floor of Building #12 and one liquid waste sample from a 5-gallon metal container also located on the first floor, near the 55-gallon drums. The solid waste material collected from the drums appeared to be granular activated carbon indicating that the two drums may have been used for water treatment. A sampling summary is presented in Table 4. Photographs of the tanks and Tetra Tech drum sampling activities are provided in the Appendix B. Figures 4, 5, and 6 show the locations of the samples collected from the drums and containers on the second and first floor Building 7 and from the first floor of Building #12, respectively. At each of the sampling locations, Tetra Tech filled two certified-clean, 4-ounce CWM glass jars with Teflon lined septa lids for TCL and TCLP VOCs and six certified-clean 8-ounce CWM glass jars with Teflon lined lids for TAL total metals and cyanide, aroclors, TCLP SVOC, TCLP metals, TCLP pesticides and herbicides, and ignitibility and corrosivity analyses.

4.3.3 Buildings # 7 and # 12 Basement Sampling


As summarized in Table 4, Tetra Tech collected a total of three aqueous samples and three sediment samples from the subbasement of Building 7, including one duplicate sample and one aqueous and one sediment samples from a sump in the basement of Building # 12. Figures 5 and 7 show the locations of the aqueous and sediment samples collected from Building 7 and Building #12, respectively. At each of the aqueous sampling locations, Tetra Tech filled three certified-clean, 40-ml glass VOC vials with Teflon lined septa lids for TCL VOC and four certified-clean 32-ounce amber glass jars for TCL SVOCs, pesticides and PCBs. At each of the sediment sampling locations, Tetra Tech filled one certified-clean, 4-ounce CWM glass jars with Teflon lined septa lids for TCL VOC and four certified-clean 8-ounce CWM glass jars with Teflon lined lids for TCL SVOCs, pesticides, aroclors, TAL total metals and cyanide, and ignitibility and corrosivity analyses.


Legend

Aqueous sampling location

▼ Sediment sampling location

Asbestos sampling location

Source: Modified from DigitalGlobe aerial photography, September 19, 2009, and from Soil & Groundwater Sampling Plan, Drawing 092976-SP-1, PMK Group, Inc., October 16, 2009.

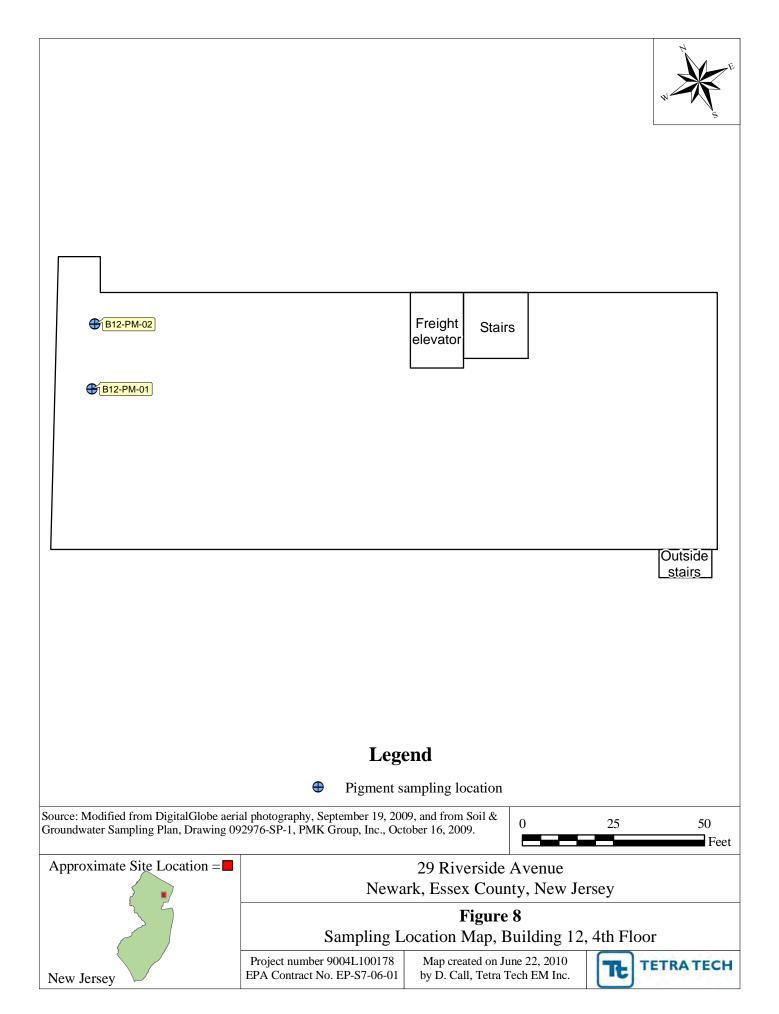
29 Riverside Avenue Newark, Essex County, New Jersey

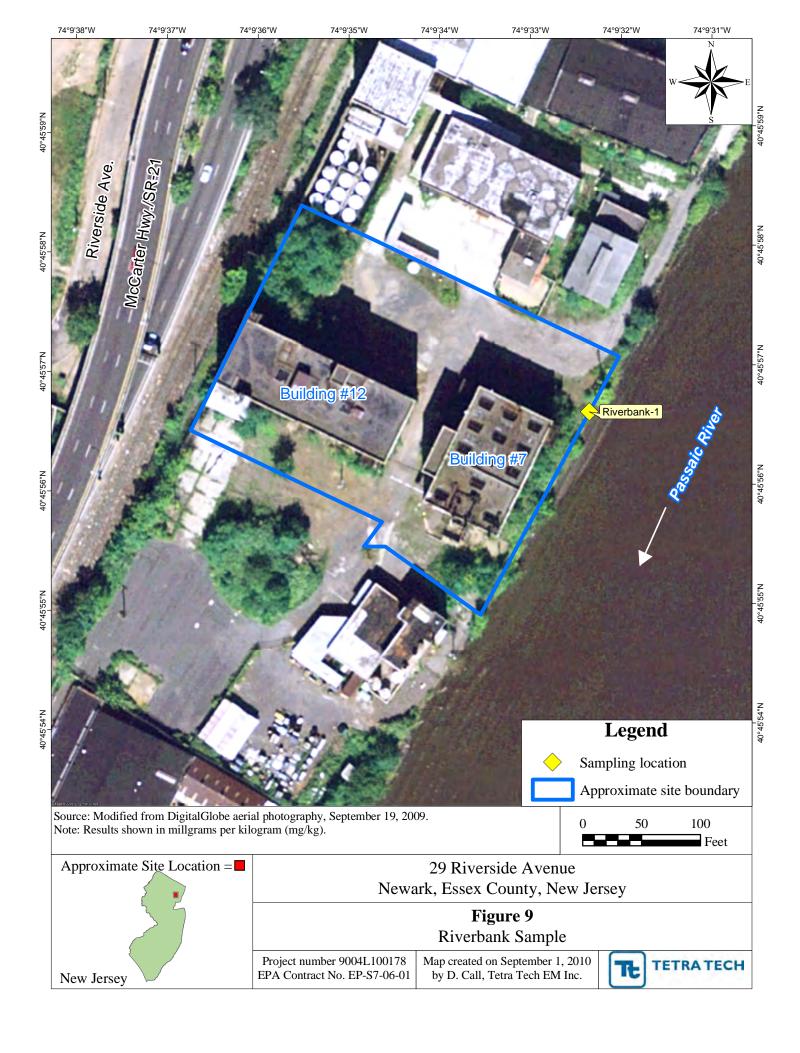
Figure 7

Sampling Location Map, Building 12, Basement

Project number 9004L100178 EPA Contract No. EP-S7-06-01 Map created on July 8, 2010 by D. Call, Tetra Tech EM Inc.

4.3.4 Sampling of Red and Blue-Colored Pigments Located in Building #12


Tetra Tech collected one sample of the red-colored pigment and one sample of blue-colored pigments observed on the floors of Building #12. Figure 8 shows the locations of the pigment samples collected from Building #12. At each sampling location, Tetra Tech filled one certified-clean, 4-ounce CWM glass jar with Teflon lined septa lids for TCL VOC and three certified-clean 8-ounce CWM glass jars for TCL SVOCs, pesticides and PCBs. At each sampling location, Tetra Tech filled one certified-clean, 4-ounce CWM glass jars with Teflon lined septa lids for TCL VOCs and three certified-clean 8-ounce CWM glass jars with Teflon lined lids for TCL SVOCs, pesticides, aroclors, TAL total metals and cyanide, and ignitibility and corrosivity analyses.


4.3.5 Collection of Tar Samples

In addition to the collection of samples in Building #7 and Building #12, Tetra Tech collected a composite sample of a tar/resin-like material that was observed along the base of the north wall of Building #7 (identified as B7-TAR-01) and also leaching from the bank of the Passaic River (identified as Riverbank-1). Sampling location B7-TAR-01 is shown on Figure 5 and sampling location Riverbank-1 is shown on Figure 9. At each of the sampling locations, Tetra Tech filled two certified-clean, 4-ounce CWM glass jars with Teflon lined septa lids for TCL and TCLP VOCs and six certified-clean 8-ounce CWM glass jars with Teflon lined lids for TAL total metals and cyanide, aroclors, TCLP SVOCs, TCLP metals, TCLP pesticides and herbicides, and ignitibility and corrosivity analyses.

4.3.6 Asbestos-Form and Potential Asbestos Containing Material Sampling

As summarized in Table 4, Tetra Tech collected 11 bulk samples from pipe insulation contained inside and outside of Buildings # 7 and one bulk sample of pipe insulation in the basement of Building # 12. Potential asbestos containing material (PACM) samples were analyzed for the presence of asbestos-form fibers using EPA 600-R-93-116 "Method for the Determination of Asbestos in Bulk Building Materials using Polarized Light Microscopy" and EPA Method 600/R-93/116 Section 2.5 (Transmission Electron Microscopy (TEM) Percent by Mass). Photographs of the pipe insulation and sampling activities are provided in the Appendix B. Figures 3, 4, 5, and 7 show the locations of the PACM samples collected by Tetra Tech personnel.

4.4 SAMPLE HANDLING

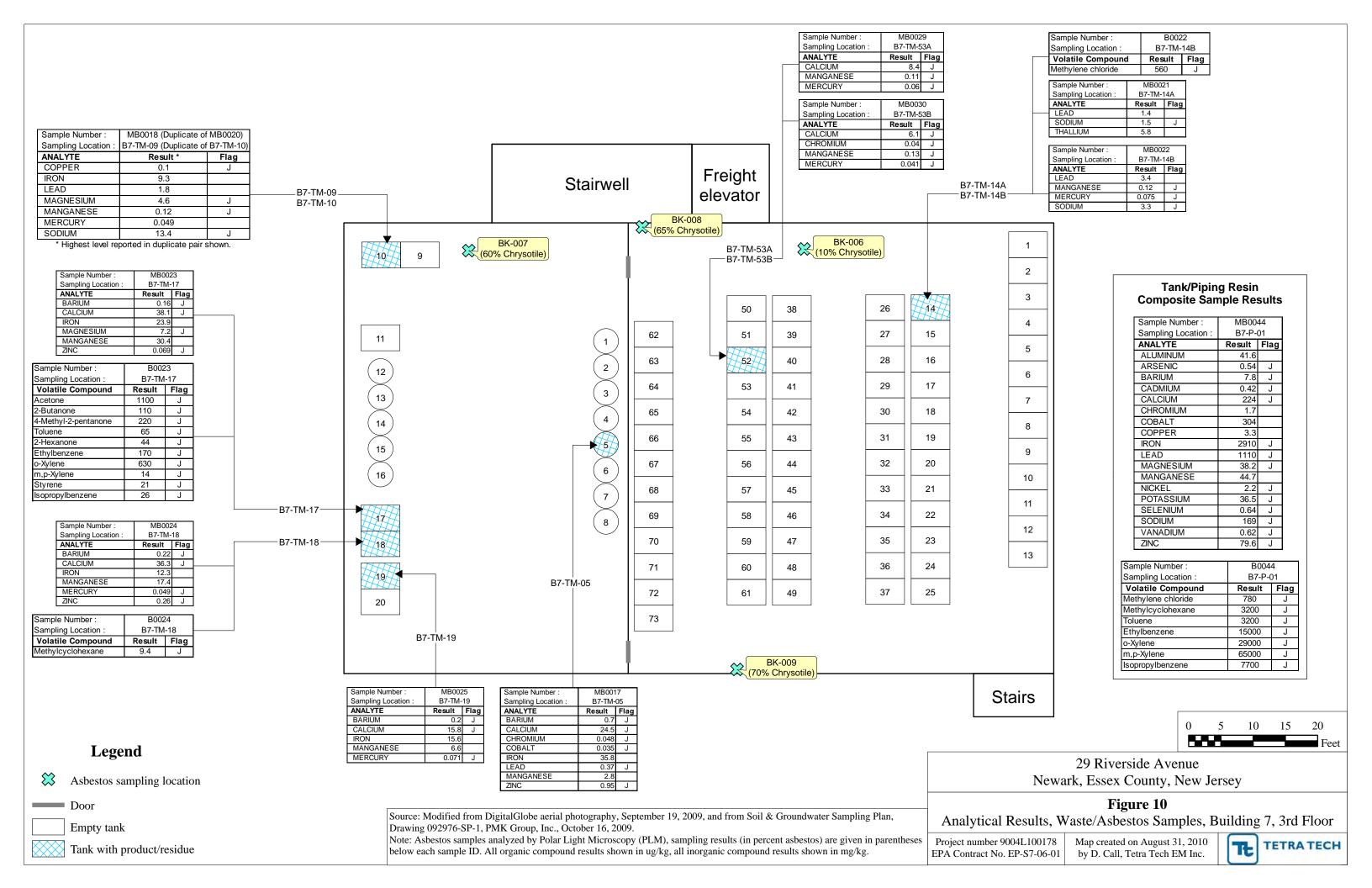
Sample handling, packaging, and shipment procedures were conducted in accordance with Tetra Tech SOP No. 019, "Packaging and Shipping Samples" (Tetra Tech 2008b). CLP labels and bottleware tags were placed on all sample containers and all shipping containers were properly labeled with EPA chain-of-custody seals and delivered with signed chain-of-custody forms and appropriate hazard warnings for laboratory personnel. Samples were shipped to the CLP laboratories assigned by EPA Region 2 and to private laboratories procured by Tetra Tech as shown in Table 4. Samples collected for organic and inorganic analyses were shipped to EPA CLP laboratories, A4 Scientific of The Woodlands, Texas and Bonner Analytical Testing Company of Hattiesburg, Mississippi, respectively, under CLP Case Number 40200. Samples were shipped to A4 Scientific on June 10, 2010 and to Bonner Analytical Testing Company on June 11, 2010. Appropriate samples were preserved and all samples were kept on ice during delivery to the assigned CLP laboratory. All sampling data, including sample time, date, location, type, and sampler, was recorded on Forms2Lite chain-of-custody and traffic reports and in the site logbook. Copies of the U.S EPA CLP traffic report and chain of custody records are provided in Appendix C.

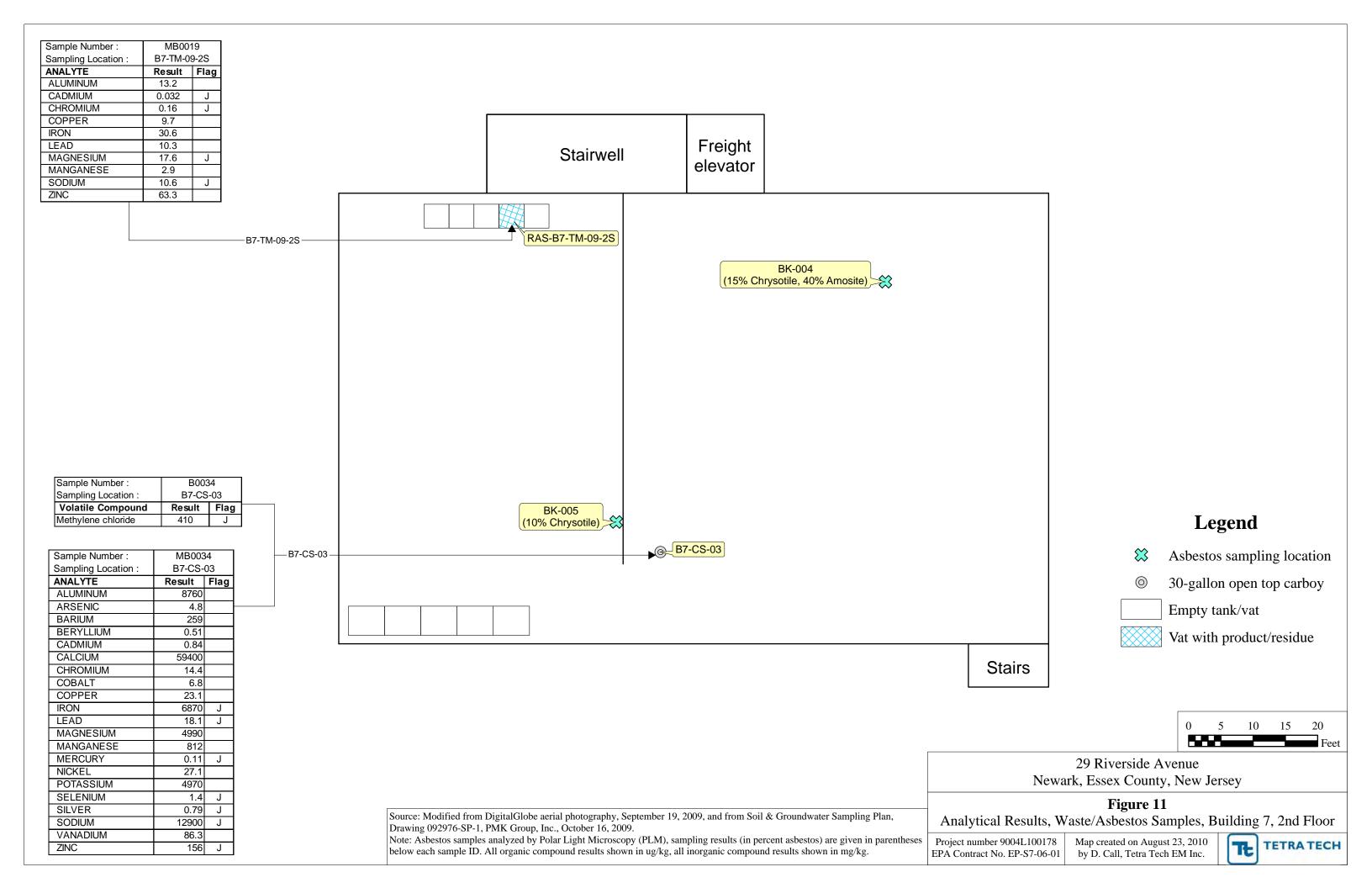
PACM and samples collected for corrosivity and ignitibility were shipped to EMSL, a private laboratory procured by Tetra Tech, on June 14, 2010. An EMSL asbestos chain-of-custody Record was used for the PACM samples and is also included in Appendix C.

4.5 IDW AND EQUIPMENT DECONTAMINATION

All investigation-derived waste (IDW) generated during the removal assessment (dedicated sampling equipment and personal protective equipment [PPE]) was double-bagged and placed in one of two 55-gallon drums that remained on site. Non-dedicated sampling equipment underwent a gross decontamination with Alconox and distilled water followed by a double rinse with distilled water, in accordance with Tetra Tech SOP No. 002, "General Equipment Decontamination" (Tetra Tech 2009b). Disposal of IDW will be arranged following the receipt of the sample analytical data.

5.0 ANALYTICAL RESULTS


As detailed in section 4.0 all samples collected during this assessment were submitted to EPA-assigned laboratories for analysis. Table 4 provides a summary for all of the samples collected during this sampling event including the sample matrix, and analytical parameters. The sections below discuss the analytical results reported by the laboratories for the samples collected during this assessment.


5.1 STORAGE/PROCESS TANK SAMPLING RESULTS

Analytical results for the 10 waste samples collected from tanks and containers located on the second and third floors of Building #7 indicated the presence of VOCs above the analytical quantitation limit in samples collected from tank 17 (sample B7-TM-17) and tank 14 (sample B7-TM-14B). VOCs reported in B7-TM-17 include acetone (1,100 μ g/kg [micrograms per kilogram]) and xylene (630 μ g/kg); methylene chloride was reported at 560 μ g/kg in the sample collected from tank 14B. In addition to these VOCs, various VOC tentatively identified compounds (TIC) were reported above the analytical quantitation limit from the samples collected from tanks 5, 9 and 14A and 14B. Analytical results for the composite sample, B7-P-01 collected of the resin-like material present in the third floor tank process lines and pipes also indicated the presence of VOCs and VOC TICs, including acetone (780 μ g/kg), methylcyclohexane (3,200 μ g/kg), toluene (3,200 μ g/kg), ethylbenzene (150,000 μ g/kg), o-xylene (29,000 μ g/kg), m,p-xylene (65,000 μ g/kg) and isopropylbenzene (7,700 μ g/kg).

No aroclor compounds or significant levels of inorganic compounds were reported in any tank or container samples collected from Building #7. A lead level of 1,110 milligrams per kilogram (mg/kg) was reported in the composite sample B7-P-01. The TCLP analysis for the tank and container samples did not reveal any compound that exceeded the corresponding regulatory level. In addition, none of the tank samples exhibited the characteristics of corrosivity (pH less than 2 or greater than 12.5) or ignitability (flash point less than 140° F).

The analytical data for the waste samples collected from the tanks located on the second and third floors of Building #7 are summarized in Appendix D, Tables 1 through 5 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figures 10 and 11. The ignitability/corrosivity test results are provided an Attachment 1.

5.2 DRUM, CARBOY, AND CONTAINER SAMPLING RESULTS

Building #7

Analytical results for the six samples collected from drums and containers located on the first floor of Building #7 indicated the presence of VOCs in one sample. Sample B7-DS-02 collected from a 55-gallon drum located on the first floor contained methylene chloride (380 μ g/kg), toluene (4,100 μ g/kg), ethylbenzene (250,000 μ g/kg), o-xylene (390,000 μ g/kg), m,p-xylene (710,000 μ g/kg) and isopropylbenzene (21,000 μ g/kg). No other drum or container sample collected from the first floor of Building #7 contained VOCs above the analytical quantitation limits. Various VOC TICs were also reported in samples collected from drums and containers located on the first floor of Building #7 including samples B7-DS-02, B7-PS-03, B7-PS-01 and B7-CS-02.

No aroclor compounds or significant levels of inorganic compounds were reported in any of the samples collected from drums or containers located on the first floor of Building #7. The only compound reported from the TCLP analysis of these samples to exceed the corresponding regulatory level was pyridine, which was detected at an estimated concentration of 98,000 micrograms per liter (µg/l) in sample B7-CS-02 collected from a 5-gallon plastic container located in the first floor stairwell of Building #7. Sample B7-CS-02 was the only sample to exhibit the characteristic of ignitability with a flash point of 130° F. No sample collected from the third floor of Building #7 exhibited the characteristic of corrosivity.

Sample B7-CS-03 collected from an open 30 gallon carboy drum located on the second floor of Building #7 contained methylene chloride at 410 μ g/kg. No aroclor compounds or significant levels of inorganic compounds were reported in sample B7-CS-03. The TCLP analysis for the sample collected from this carboy did not reveal any compound that exceeded the corresponding regulatory level. This sample did not exhibit the characteristics of corrosivity or ignitability.

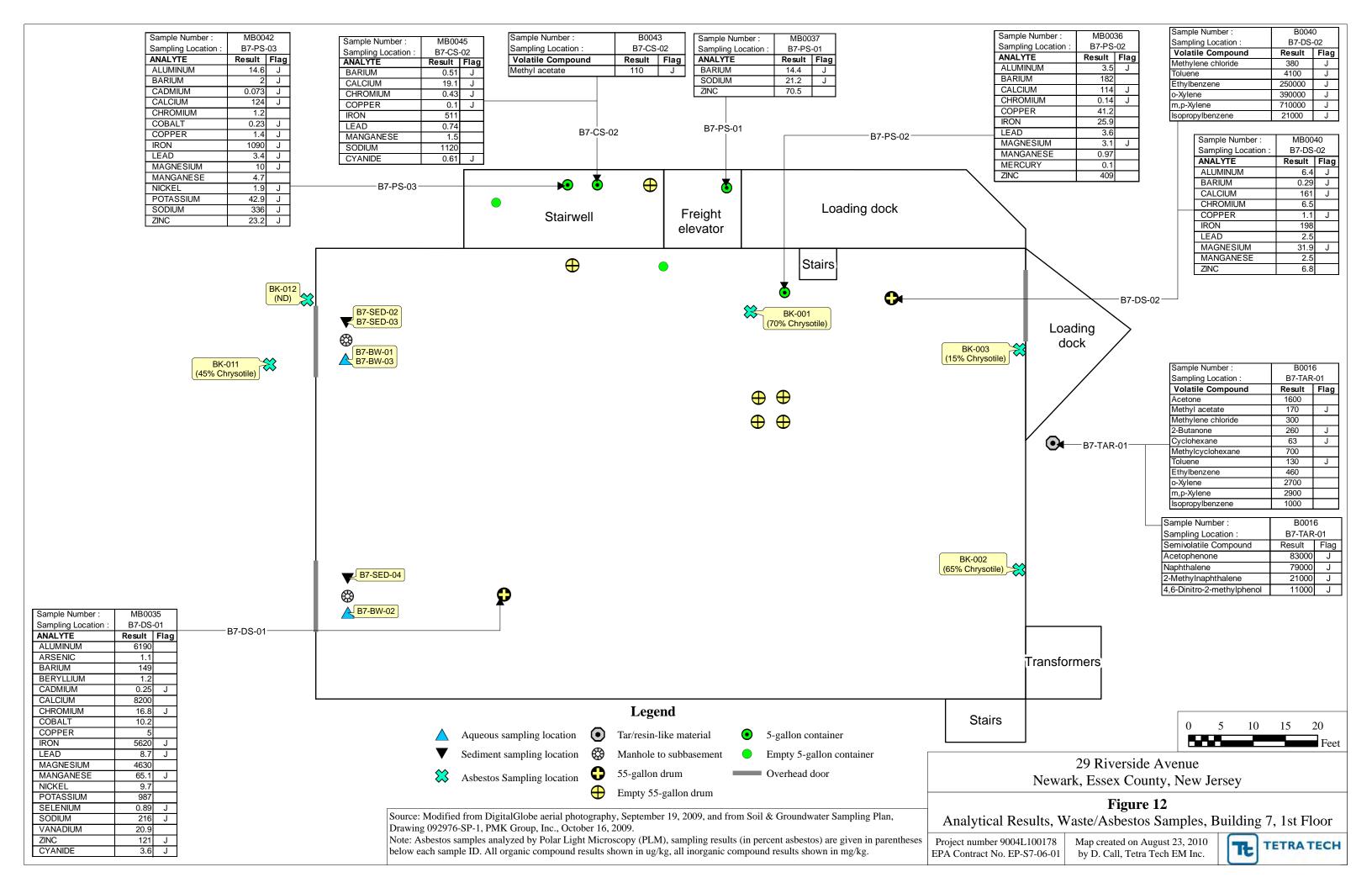
Building #12

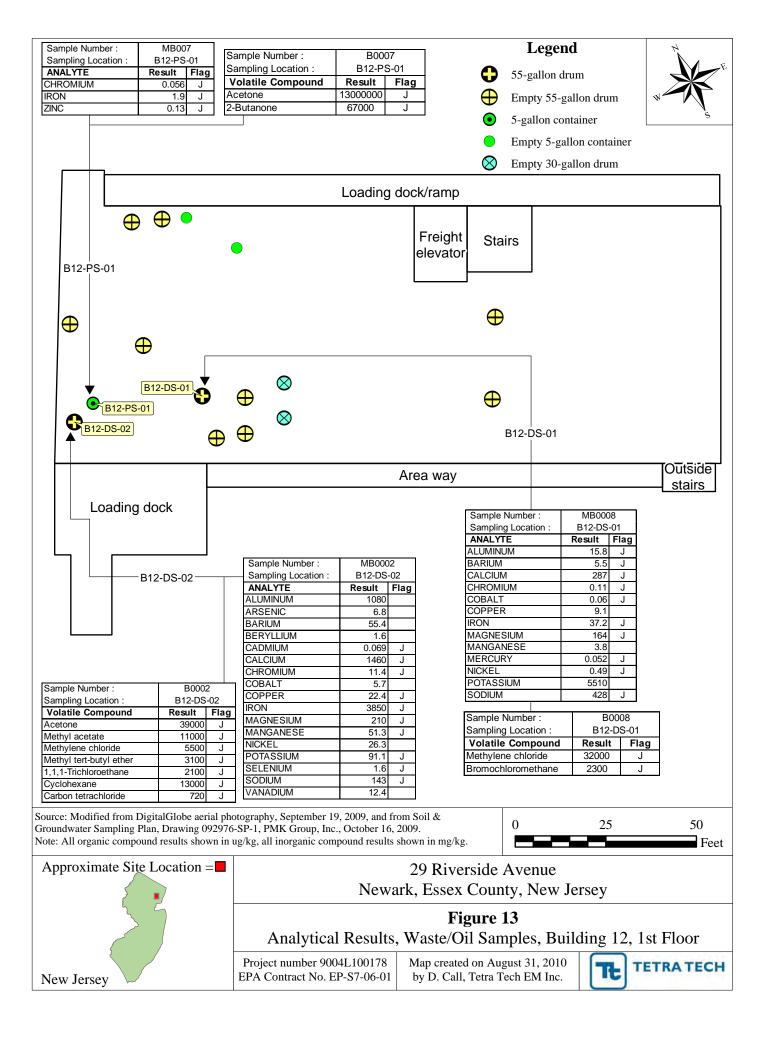
Analytical results reported from samples collected from the two drums (B12-DS-02 and B12-DS-01) and one 5-gallon container (B12-PS-01) located on the first floor of Building #12 indicate that they contain VOCs. Specifically, the sample collected from the 55-gallon drum identified as DS-01 contained methylene chloride (32,000 μ g/kg) and bromochloromethane (2,300 μ g/kg); the 55-gallon drum identified as DS-02 contained acetone (39,000 μ g/kg), methyl acetate (11,000 μ g/kg), methylene chloride (5,500 μ g/kg), methyl tert-butyl ether (3,100 μ g/kg) 1,1,1-trichloroethane (2,100 μ g/kg), cyclohexane (13,000 μ g/kg) and carbon tetrachloride (720 μ g/kg). The oily sample collected from the pail identified as PS-01 contained acetone

 $(13,000,000 \,\mu g/kg)$ and 2-butanone $(67,000 \,\mu g/kg)$. VOC TICs were also reported in the samples collected from DS-02 and PS-01.

No aroclor compounds were detected in the samples collected from the 55-gallon drums; there was insufficient volume to perform the aroclor analysis on the oily sample collected from PS-01. There were no significant levels of inorganic compounds reported in any of these samples and the TCLP analysis did not reveal any compound that exceeded the corresponding regulatory level. In addition, none of the container samples exhibited the characteristics of corrosivity (pH less than 2 or greater than 12.5) or ignitability (flash point less than 140° F).

The analytical data for the samples collected from drums and containers located within Building #7 and Building #12 are summarized in Appendix D, Tables 6 through 10 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figures 12 and 13. The ignitability/corrosivity test results are provided an Attachment 1.


5.3 BASEMENT SAMPLING RESULTS


Building #7 Basement

Analytical results from aqueous samples B7-BW-01 and duplicate sample B7-BW-03 collected from the subbasement of Building #7 revealed numerous VOCs up to a maximum concentration of 430 μ g/l reported for toluene. Numerous VOC TICs were also reported in these samples. The second subbasement aqueous sample collected from Building #7 (B7-BW-02) contained no VOCs or VOC TICs above the laboratory quantitation limit.

SVOCs were also detected in the subbasement aqueous samples collected from Building #7 including phenol (up to 13,000 μ g/l), 2-methlyphenol (up to 13,000 μ g/l) and 4-methly phenol (up to 4,700 μ g/l). The pesticides alpha-BHC and gamma chlordane were reported in one of the subbasement aqueous samples at estimated concentrations of 310 μ g/l and 140 μ g/l, respectively. No aroclor compounds were reported in any of the aqueous samples collected from the subbasement of Building #7.

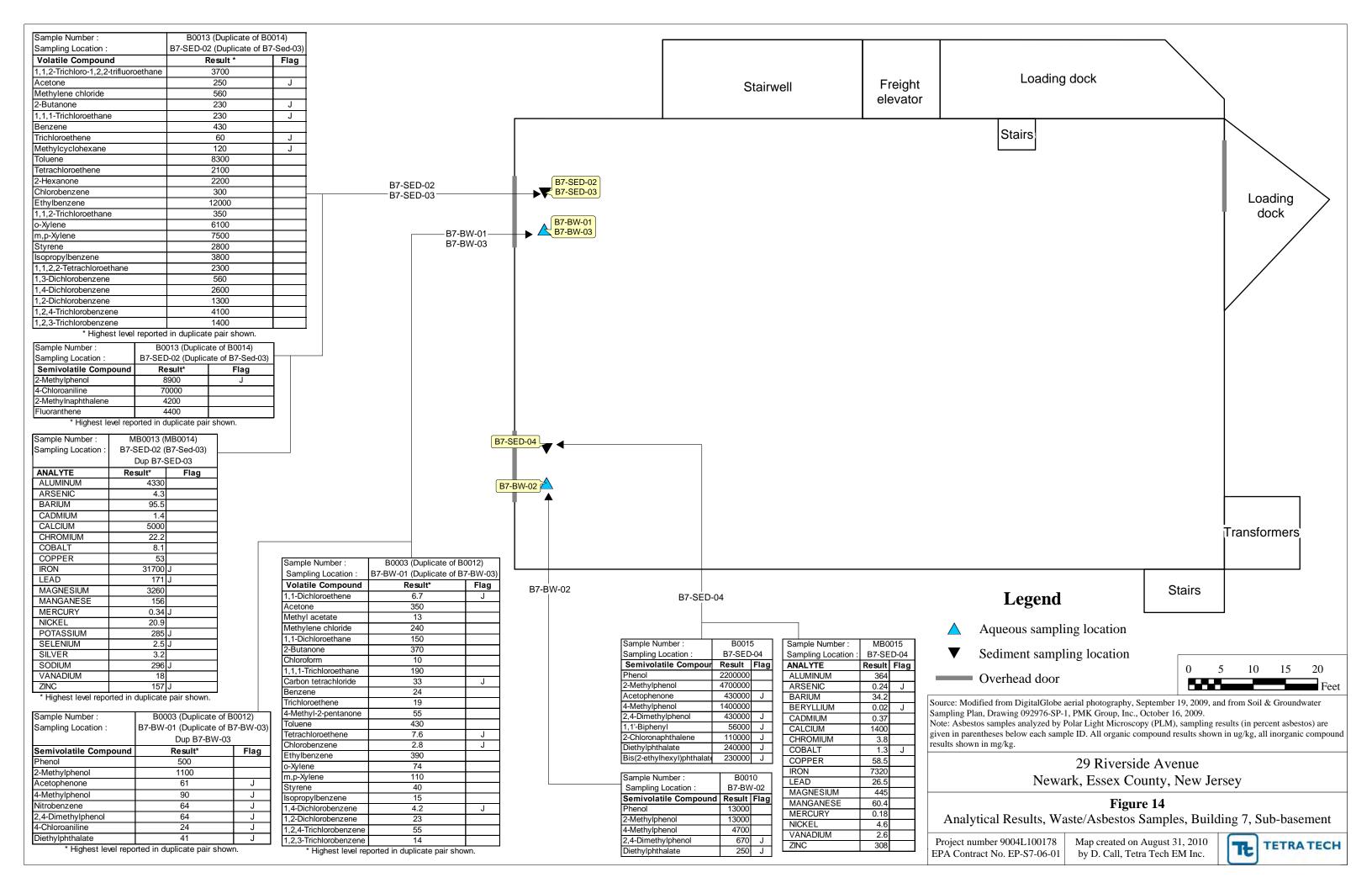
Analytical results of the sediment samples collected from the Building #7 subbasement revealed numerous VOCs with the highest concentrations detected in B7-SED-04 including 1,1,2-trichloro-1,2,2-trifluoroethane (27,000 μ g/kg), acetone (11,000 μ g/kg), methyl acetate (12,000 μ g/kg), methylene chloride (220,000 μ g/kg), 2-butanone (120,000 μ g/kg), chloroform (110,000 μ g/kg), 1,1,1-trichloroethane (1,100,000 μ g/kg), trichloroethene (5,200 μ g/kg), methylcyclohexane (2,900 μ g/kg), 4-methyl-2-pentanone (24,000 μ g/kg), toluene (230,000 μ g/kg), tetrachloroethene (280,000 μ g/kg), chlorobenzene (2,200 μ g/kg), ethylbenzene (58,000 μ g/kg), 1,1,2-trichloroethane (91,000 μ g/kg), o-xylene (240,000 μ g/kg), m,p-xylene (230,000

 $\mu g/kg),\,1,3$ -dichlorobenzene (5,000 $\mu g/kg),\,1,4$ - dichlorobenzene (5,800 $\mu g/kg),\,1,2$ - dichlorobenzene (59,000 $\mu g/kg),\,1,3$ -dichlorobenzene (290,000 $\mu g/kg)$ and 1,2,3-trichlorobenzene (58,000 $\mu g/kg).$ Numerous VOC TICs were also detected in these sediment samples.

SVOCs were also detected in Building #7 subbasement sediment samples. The highest concentrations were reported in B7-SED-04 including phenol (2,200,000 μ g/kg), 2-methylphenol (4,700,000 μ g/kg), acetophenone (430,000 μ g/kg), 4-methylphenol (1,400,000 μ g/kg), 2,4-dimethylphenol (430,000 μ g/kg), 1,1-biphenyl (56,000 μ g/kg), 2-chloronaphthalene (110,000 μ g/kg), diethylphthalate (240,000 μ g/kg), and bis(2-ethylhexyl)phthalate (230,000 μ g/kg).

No pesticides, aroclor compounds or significant levels of inorganic compounds were reported in the sediment samples collected from the subbasement of Building #7.

Corrosivity and ignitability analysis was completed for samples B7-SED-02 and B7-SED-03; neither sample exhibited these characteristics.


The analytical data for the samples collected from the subbasement of Building #7 are summarized in Appendix D, Tables 17 through 27 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figure 14. The ignitability/corrosivity test results are provided an Attachment 1.

Building # 12 Basement Sampling Results

The only VOC reported above the laboratory quantitation limit in the aqueous sample collected from the sump in the basement of Building #12 was methylene chloride, reported at 13 μ g/l. No other organic compounds were reported in this sample.

VOCs reported in the sediment sample collected from the basement of Building #12 include methylene chloride (11,000 μ g/kg), m.p-xylene (5,800 μ g/kg), bromoform (15,000 μ g/kg), 1,3-dichlorobenzene (4,400 μ g/kg), 1,2,4-trichlorobenzene (2,600,000 μ g/kg) and 1,2,3-trichlorobenzene (1,300,000 μ g/kg).

The only SVOC detected in the Building #12 sediment sample was 2-methlylphenol reported at a concentration of $7,100 \,\mu\text{g/kg}$. No pesticides, aroclor compounds or significant levels of inorganic compounds were reported in the sediment sample collected from the basement of Building #12.

The analytical data for the samples collected from the subbasement of Building #12 are summarized in Appendix D, Tables 17 through 27 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figure 15.

5.4 RED AND BLUE-COLORED PIGMENT MATERIAL SAMPLING RESULTS

Analytical results for the pigment material samples located on the fourth floor of Building 12 indicate low levels of VOCs including up to 710 μ g/kg of acetone, 380 μ g/kg of methyl acetate, 300 μ g/kg of methylene chloride and 4,300 μ g/kg of toluene. SVOCs detected in the pigment material samples include di-n-butylphthalate (1,300 μ g/kg) and bis(2-ethylhexyl)phthalate (34,000 μ g/kg). Inorganic compounds detected at elevated levels include iron, detected at 102,000 mg/kg and lead detected at 143 mg/kg in B12-PM-01.

Corrosivity and ignitability analysis completed for the two pigment material samples indicated that the samples did not exhibit these characteristics.

The analytical data for the pigment material samples are summarized in Appendix D, Tables 11 through 16 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figure 16. The ignitability/corrosivity test results are provided in Attachment 1.

5.5 TAR MATERIAL SAMPLING RESULTS

In addition to the samples collected from Buildings #7 and #12, a composite sample of a tar/resin-like material that was observed along the base of the northeast wall of Building #7 (identified as B7-TAR-01) and also leaching from the bank of the Passaic River (identified as Riverbank-1). Analytical results for sample B7-TAR-01 indicated the presence of numerous VOCs including acetone (1,600 μ g/kg), methylene chloride (300 μ g/kg), 2-butanone (260 μ g/kg), methylcyclohexane (700 μ g/kg), ethylbenzene (460 μ g/kg), o-xylene (2,700 μ g/kg), m,p-xylene (2,900 μ g/kg), and isopropylbenzene (1,000 μ g/kg). This sample also contained numerous VOC TICs. SVOCs reported in this sample include actophenone (83,000 μ g/kg), naphthalene (79,000 μ g/kg), 2-methylnaphthalene (21,000 μ g/kg) and 4,6-dinitro-2-methylphenol (11,000 μ g/kg).

VOC analysis was not completed on the sample collected adjacent to the Passaic River (Riverbank-1). No aroclor compounds were detected in this sample. The only inorganic compound reported at an elevated level was lead at 357 mg/kg. Lead was also reported in the TCLP results at $5.910 \,\mu\text{g/l}$ which is above the regulatory level of $5.000 \,\mu\text{g/l}$; no other compound

Sample Number :	MB0009				
Sampling Location :	B12-SE				
ANALYTE	Result	Flag			
CALCIUM	8.6	J			
CHROMIUM	0.08	J			
IRON	3.9	J			
MERCURY	120	J			
SODIUM	5.5	J			
CYANIDE	47	.1			

Sample Number :	B0009			
Sampling Location :	ing Location : B12-SED-01			
Semivolatile Compound	Result	Flag		
2-Methylphenol	7100	J		

Sample Number :	B000	19
Sampling Location :	B12-SE	D-01
Volatile Compound	Result	Flag
Methylene chloride	11000	J
m,p-Xylene	5800	J
Bromoform	15000	
1,3-Dichlorobenzene	4400	J
1,2,4-Trichlorobenzene	2600000	
1,2,3-Trichlorobenzene	1300000	
	•	•

B12-AQ-01

B12-SED-01

Freight elevator

Stairs

BK-010

(40% Chrysotlie)

B12-AQ-01

	/	
Sample Number :	B0004	1
Sampling Location :	B12-AQ	-01
Volatile Compound	Result	Flag
Acetone	8.7	J
Methylene chloride	13	
1,1,1-Trichloroethane	5.5	
Toluene	1.6	J
m,p-Xylene	0.86	J
1,4-Dichlorobenzene	0.58	J
1,2,4-Trichlorobenzene	1.2	J

 Sample Number :
 B0004

 Sampling Location :
 B12-AQ-01

 Semivolatile Compound
 Result
 Flag

 Di-n-butylphthalate
 0.55
 J

 Bis(2-ethylhexyl)phthalate
 2.1
 J

Legend

Aqueous sampling location

•

Sediment sampling location

 \approx

Asbestos sampling location

0 25 50 Feet

Source: Modified from DigitalGlobe aerial photography, September 19, 2009, and from Soil & Groundwater Sampling Plan, Drawing 092976-SP-1, PMK Group, Inc., October 16, 2009.

Note: Asbestos samples analyzed by Polar Light Microscopy (PLM), sampling results (in percent asbestos) are given in parentheses below each sample ID. All organic compound results shown in ug/kg (solid) and ug/L (aqueous), all inorganic compound results shown in mg/kg.

New Jersey

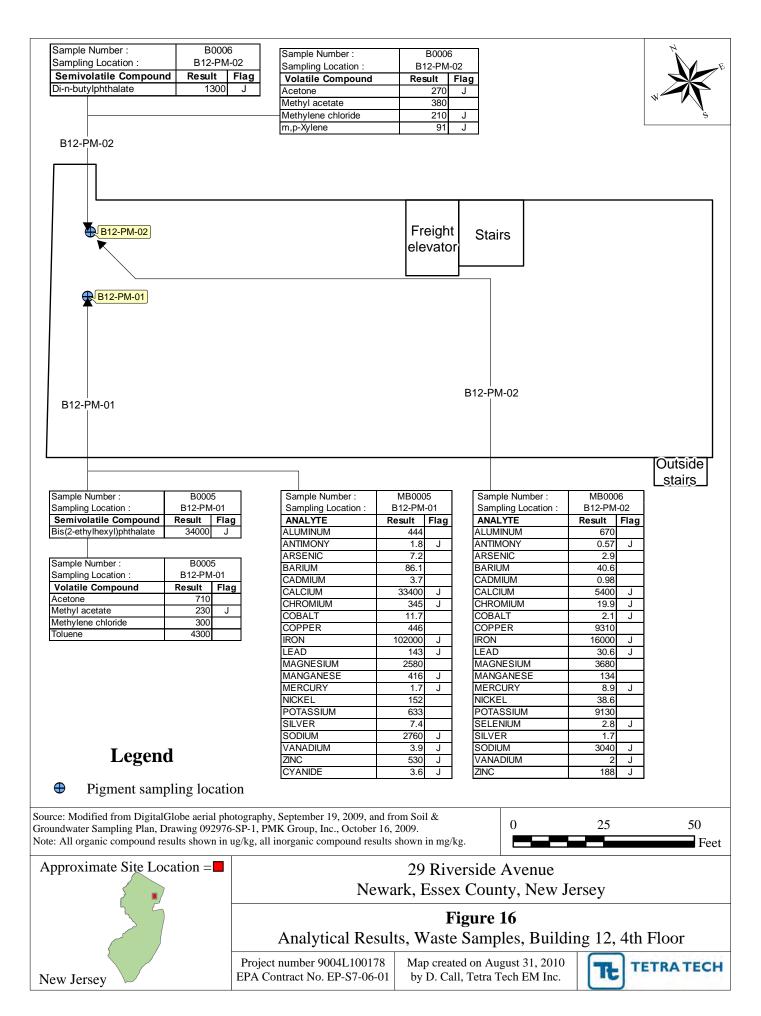
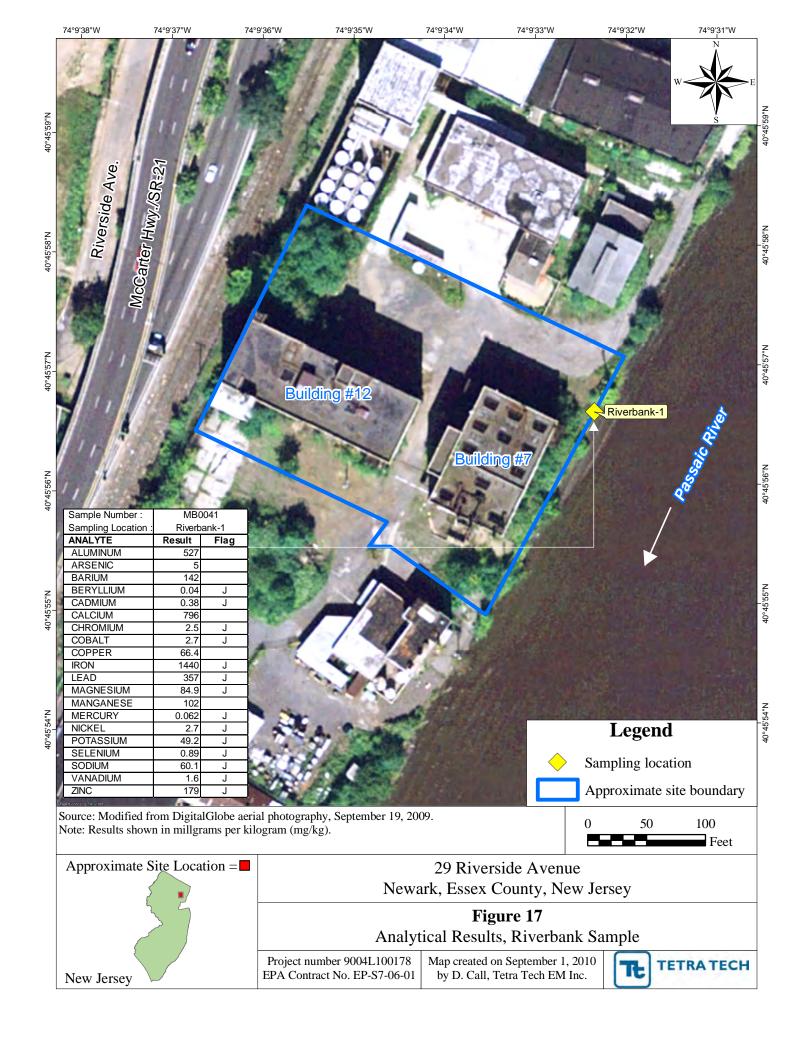

29 Riverside Avenue Newark, Essex County, New Jersey

Figure 15

Analytical Results, Basement Water/Sediment, Building 12, Basement

Project number 9004L100178 EPA Contract No. EP-S7-06-01 Map created on August 31, 2010 by D. Call, Tetra Tech EM Inc.



exceeded the corresponding TCLP regulatory level. The analytical data for B7-TAR-01 and Riverbank-1 are summarized in Tables 28 and 34 and the sampling locations and concentrations detected above the analytical quantitation limits are presented on Figures 12 and 17.

5.6 POTENTIAL ASBESTOS CONTAINING MATERIAL SAMPLING

Analytical results for the 11 bulk samples collected from pipe insulation contained inside and outside of Buildings # 7 and the one bulk sample of pipe insulation in the basement of Building #12 indicated varying amounts of asbestos fibers. The percentage of chrysotile asbestos fibers reported in the four bulk samples collected from the first floor of Building #7 ranged from non-detectable amounts to 70%. Results for the two bulk samples collected from the second floor of Building #7 indicated 10% chrysotile asbestos in one sample and 15% chrysotile and 40% amosite asbestos in the second sample. The four bulk samples collected from the third floor of Building #7 contained between 10% to 70% chryotile asbestos and the one sample collected from the basement of Building #12 contained 40% chryotile asbestos. The locations where the bulk samples were collected are provided in Figures 10 through 12 and Figure 15. The asbestos analytical results report is provided in Attachment 2.

6.0 SUMMARY

Analytical results reported from samples collected during this assessment indicate the following:

Building #7 Subbasement

- The sediment samples collected from the subbasement contained numerous hazardous substances including VOCs and SVOCs. Specifically, the following VOCs were detected in B7-SED-04: 1,1,2-trichloro-1,2,2-trifluoroethane (27,000 μg/kg), acetone (11,000 μg/kg), methyl acetate (12,000 μg/kg), methylene chloride (220,000 μg/kg), 2-butanone (120,000 μg/kg), chloroform (110,000 μg/kg), 1,1,1-trichloroethane (1,100,000 μg/kg), trichloroethene (5,200 μg/kg), methylcyclohexane (2,900 μg/kg), 4-methyl-2-pentanone (24,000 μg/kg), toluene (230,000 μg/kg), tetrachloroethene (280,000μg/kg), chlorobenzene (2,200 μg/kg), ethylbenzene (58,000 μg/kg), 1,1,2-trichloroethane (91,000 μg/kg), o-xylene (240,000 μg/kg), m,p-xylene (230,000 μg/kg), 1,3-dichlorobenzene (59,000 μg/kg), 1,3-dichlorobenzene (59,000 μg/kg), 1,3-dichlorobenzene (290,000 μg/kg) and 1,2,3-trichlorobenzene (58,000 μg/kg).
- Numerous SVOCs were also detected in B7-SED-04 including: phenol (2,200,000 $\mu g/kg)$, 2-methylphenol (4,700,000 $\mu g/kg)$, acetophenone (430,000 $\mu g/kg)$, 4-methylphenol (1,400,000 $\mu g/kg)$, 2,4-dimethylphenol (430,000 $\mu g/kg)$, 1,1-biphenyl (56,000 $\mu g/kg)$, 2-chloronaphthalene (110,000 $\mu g/kg)$, diethylphthalate (240,000 $\mu g/kg)$, and bis(2-ethylhexyl)phthalate (230,000 $\mu g/kg)$.

Building #7 First Floor

- The 55-gallon drum identified as DS-02 contains a mixture of VOCs including methylene chloride (380 μg/kg), toluene (4,100 μg/kg), ethylbenzene (250,000 μg/kg), o-xylene (390,000 μg/kg), m,p-xylene (710,000 μg/kg) and isopropylbenzene (21,000 μg/kg).
- Asbestos-containing fibers exist in pipe insulation present on the first floor of Building #7.

Building #7 Second Floor

- The 30-gallon carboy where sample B7-CS-03 was collected contained 410 μ g/kg of methylene chloride.
- Asbestos-containing fibers exist in pipe insulation present on the second floor of Building #7.

Building #7 Third Floor

- Tanks 14 and 17 contain VOCs including acetone (1,100 μg/kg), xylene (630 μg/kg) and methylene chloride (560 μg/kg).
- VOCs TICs were identified in tanks 5, 9 and 14.

- Analytical results for the composite sample, B7-P-01 collected of the resin-like material present in the third floor tank process lines and pipes also indicated the presence of VOCs including acetone (780 μg/kg), methylcyclohexane (3,200 μg/kg), toluene (3,200 μg/kg), ethylbenzene (150,000 μg/kg), o-xylene (29,000 μg/kg), m,p-xylene (65,000 μg/kg) and isopropylbenzene (7,700 μg/kg).
- Asbestos-containing fibers exist in pipe insulation present on the third floor of Building #7.

Building #12 Basement

- VOCs exist in the sediments located in the basement of Building #12 including methylene chloride (11,000 μg/kg), m.p-xylene (5,800 μg/kg), bromoform (15,000 μg/kg), 1,3-dichlorobenzene (4,400 μg/kg), 1,2,4-trichlorobenzene (2,600,000 μg/kg) and 1,2,3-trichlorobenzene (1,300,000 μg/kg).
- Asbestos-containing fibers exist in pipe insulation present in the basement of Building #12.

Building #12 First Floor

- The 55-gallon drum where sample B12-DS-01 was collected contained VOCs including methylene chloride (32,000 μg/kg) and bromochloromethane (2,300 μg/kg).
- The 55-gallon drum where B12-DS-02 was collected also contained VOCs including acetone (39,000 μ g/kg), methyl acetate (11,000 μ g/kg), methylene chloride (5,500 μ g/kg), methyl tert-butyl ether (3,100 μ g/kg) 1,1,1-trichloroethane (2,100 μ g/kg), cyclohexane (13,000 μ g/kg) and carbon tetrachloride (720 μ g/kg).
- The oily sample collected from the pail identified as PS-01 contained acetone (13,000,000 μg/kg) and 2-butanone (67,000 μg/kg).

Building #12 – Fourth Floor Pigment Material

• The pigment material located on the fourth floor of Building #12 contains VOCs and SVOCs including acetone (710 μg/kg), methyl acetate (380 μg/kg), methylene chloride (300 μg/kg) and toluene (4,300 μg/kg). SVOCs detected in the pigment material samples include di-n-butylphthalate (1,300 μg/kg) and bis(2-ethylhexyl)phthalate (34,000 μg/kg). Inorganic compounds detected at elevated levels include iron, detected at 102,000 mg/kg and lead detected at 143 mg/kg in B12-PM-01.

In addition to the interior samples detailed above collected within Buildings #7 and 12, two samples of the tar-like material that was observed leaching from the bank of the Passaic River and at the base of the northeast wall of Building #7 were also sampled. Analytical results for the sample collected from near the wall of Building #7 indicated the presence of numerous VOCs and SVOCs including acetone (1,600 μ g/kg), methylene chloride (300 μ g/kg), 2-butanone (260 μ g/kg), methylcyclohexane (700 μ g/kg), ethylbenzene (460 μ g/kg), o-xylene (2,700 μ g/kg), m,p-xylene (2,900 μ g/kg), and isopropylbenzene (1,000 μ g/kg), actophenone (83,000 μ g/kg), naphthalene (79,000 μ g/kg), 2-methylnaphthalene (21,000 μ g/kg) and 4,6-dinitro-2-methylphenol (11,000 μ g/kg). VOC analysis was not completed on the sample collected adjacent to the Passaic River; however, TCLP analysis of this sample indicated lead at 5,910 μ g/l which is above the regulatory level of 5,000 μ g/l.

7.0 REFERENCES

- Birdsall Services Group Inc./PMK Group, Inc. Draft Site Investigation Report. 1700-1712 & 1702-1716 McCarter Highway. Block 614, Lots 63 and 64. PMK Group #092976. October 16, 2009.
- Environmental Protection Agency (EPA). Code of Federal Regulations Title 40, Part 763.86 "Asbestos Sampling" Oct. 30, 1987.
- Tetra Tech EM Inc. (Tetra Tech). "Containerized Liquid, Sludge, or Slurry Sampling." SOP No. 008. January 2000a.
- Tetra Tech. "Sludge and Sediment Sampling." SOP No. 006. January 2000b.
- Tetra Tech. "Recording of Notes in Field Logbooks." SOP No. 024. December 2008a.
- Tetra Tech. "Packaging and Shipping Samples." SOP No. 019. December 2008b.
- Tetra Tech. "Surface Water Sampling." SOP No. 009. June 2009a.
- Tetra Tech. "General Equipment Decontamination." SOP No. 002. Revision No. 3. June 2009b.
- Tetra Tech. "Draft Sampling and Analysis Plan for the Riverside Avenue Site" April 22, 2010.
- United States Geological Survey. 7.5-Minute Series Topographic Map for Elizabeth, New Jersey, 1981 and Orange, New Jersey, 1981.
- Weston Solutions, Inc. Preliminary Assessment Report. 1700-1712 & 1702-1716 McCarter Highway. May 2009

APPENDIX A FIELD LOG BOOK NOTES

Location Newsork, NJ Date 6(1/10 3) Project/ Client 2 Uers: Re Aur. Site / EPA Re

	676× 1031	A. 12. C. B.	100	200	9	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	70+ (see	1] Ž		K	1 groade	Dwar.	SPA R	of sub	15 dese	HQ/57		エ	700	76.04	T
`.	DATE			-																	•	- The state of the
	REFERENCE							•									•					
	PAGE									-		•						:				

	L		i.	-	
- 5 X	ا مَا ا	1 ()	7	1 1 J	51
Chess's			7 7 1	2	7 0 5
2 3 %	2/2	14 84	2 T 2	0	9
Steve morphist L(TE) arriv		Phalas [KP] allo	() (E) (S)		4 4 -
1 2 -	1	439	HAMINGTON OSSC STO	0	1 2 2 1
Scott (ks) + Steve m Tell (Tt)	1 3 0 7		1 6 4		6 C C C C C C C C C C C C C C C C C C C
2 Steve 5	eauipner on Frid	(K) (K)	= " 4	1	6
# 1,	3 . 2 . 2	2 2 2	25.73		7.9
	7 3 3 9	~	3 4 3	3	8 2 5 3
C + 6 +	X a sol	7 3 30	Z I		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2 00 0		130	90	. 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Burns (CB) + Steve " of Tetra Tech (Tt)	remed 60x	Kend Kend The Cana	Sweedy anote To Ob	, te	te a ctrick
a - 1 d - 3	2 2 0 2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 3 7	325. te	2 4 · 3 · 3
	4 9 - 1.	5 4 3 4	2000 A	' h (h)	t u E L
3000	4 4 4 4	3 1 2 -		833	T # 4 # 1
0000	994	7 1 1		7	12 LE 1
0	0)38	000)			
<u> </u>					
	V	, ~	11 T		
• •		÷	· ·		

CONTENTS

Location Newsork NS Project / Client Knewside	1600 Tt for Call Seventy four (7)		Into 2 chamber 14 52 53 had and a sail 18 and a	2 2 2 B	The collected to
4 Location Nowark NS : pate 6/7/12 Project/Client Russide Ave Sile 6/8/4 R2	1030 Scaffold delivated to Site (D+H) rembal Te start personal assisted with off loading scaffolding	2 to How + assembled it. 2 to How + assembled it. 12:15 C.S. + K.P. Conduct invertors of drums carbons + pails	C.B. + S. M. Conduct invontory C.B. + S. M. Conduct invontory OS tomber UNTS on 3rd Floor OF BILDE 7.	after Conc CIA tan	(530 B+H Equip. Road Republication to Site with Step latter LS. + C.B. explore base went of birlding 12 - Mus Stock Gellen tanks obspryed in buse mant. Water in Sumplantade)

EPA RE Date Jue.

12 of 21

Local	Proje
ਵ:	K2
2/10	274
Date 6	7 2 7
	Ava S
ر الا	25
2000	RIJER
no	t / Client
Location	Project

Cocation Nowserk ND Date 6712 Project Client Levels de Ave Sirk EPAR2 (630 Twenty Lauks were inventived floor in the South Roam Six (e) tent Twenty had product in the South Roam (705 All the Janks had product in the South Roam Six of the Mars in the South

cation Nowark NJ Date 6(8/10)

4 3	1 3	13 8	3 2	Samoling 67		66
Depart	Potra	13. TS. (H) 13. (H) 14. (H) 15. (H)	S S S S S S S S S S S S S S S S S S S	Drum Same tonk Striping two Drum		_ •====
	. કુ કુ	3 - 3 -	\$ 5 E	15 4 3 2 4 3 3	6 7	- 3 1
2 (76)	pegin pegin	A ST	Tecely of			5 - 6 (-
5 0 6	+ q		\$ 2 A	4 - 3-		
* \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	g 12 =	2 3 3			Collected	Callected
C. B.	7 % %	1. 21 %	X. P. P. P. D. T.	1.000	5 6 to 6 t	
4 9 v	9 7 6	3 5 2	7 - F	7 7 7.		(Y)
#s+2	27 6	Weezy Temps 1. Lo: 59°F (21%)	\$ 5 T	F 6 5.	12.00 of 12.	5 × 2 × 2
6700	3745	33-15	* 4	23 4 5160		
0 0				,	1260	

	RZ
8/10	(6PA)
Date	Ue 516
・ケス・	side A
Newark	A Luar
i notation	Project / Clien

Tel Syde Past PCB Tell metals Tel Syde Past Tell VOAS Svacs Pest + Hand. Drum contacts Pest + Hand. Drum contacts Pest + 2 - 4-82 cwm glass JANS EL SEDTA LIDS. JANS EL SEDTA LIDS. C. B. + S. M. Start collecting C. B. + S. M. Start fooleans ONE - KS + KP collect 1 Housan ONS + I sedinant sample From	basomont Sump in building 12 4. 1. (1 tec lunter jars + 3 40 ml VOA VIELS Alled with Sump Laster for modes 11 for TCL VOCS, SVOCS PEST PLES 2 8-02 CWM Slass jars 4 2 4-02 CWM Slass jars 4 2 4-02 CWM Slass jars 4 2 4-02 CWM Slass jars 4 2 7-1 VORS FIRED WITH SACHMONT TRUCKLUS TOL VORS TAL METALS + CN

Location Newark, NJ Date 6/8/10 9 Project/Client Revosorde Ave Suk / EPA RZ

5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Reply + CN Low Reserver ONG HE SAMOLY (Subsis (10 11 8/45) C CONG (12 12 12 12 12 12 12 12 12 12 12 12 12 1

Docation Newark, NJ Date 6/8/18
Project/Client Risersede Ave Sufe (SPA RZ

Mad her off also reacost that (asia. is osting from bothon of North to pipes (piping of its RESMIC F. EPA would also (1 Ke = 16 bleck tar like substance that AN + 74 a smyle of the maleura wall of Passarch. - (1 ke substance 600R of resourced that 18 a a sangla as r. leaching makises thin Seperted 14 4 12.1. analysis postone a SARAGE & or Volume 57200 57 7 persone asphala Sak able pipe P. ag

Location Newark NJ Date 6/8/16 11
Project/Client Kluerside Ang, Site (EP4 R2

TCK VOC. Subg glass 1005 \$ 2-4-02 CWM glass Duplicate collected At they locathon SANGLE ID: B7. BW-01 8-62. Cwm Alled Ky TEC VOCA SUBGE! Jub-balenen 5ep74 405 Alla freed on the KS + KP collect some ous KS+KP collact sedinan Dugliet 10: B7.84.03 from manholo anbrance in clade at some location matel pole smyole from Sall one of the piping 514492 + PCB. المراجمة ンサン

Location Nawark NJ Date 6/8/16
Project/Client Risers, de Ave. 81/e 18/9/12

نعضر		etre et night hairbei de et e	<u>ٵ؞ٷؿؿؿػؿؙڗٷۺڡڒڹ</u>			San	Tan Assault	- 1 Car	a stanta a sa s		
	Duplicate, sample estented	9 /	7- 56D- 2+ F	State Susanost 12 GAST CANAGE	Show paraneters + sangle va	(BW= Basemont water), SED=	1560-04 (SED)	ct Phanol or Aneline detected.		 at location 8 W-01 (SED-02.	M405

Location Nusar & NJ Date 6/8/10 13
Project / Client Reverside Ave. S. Re / EM R2

1330 TE DESANDE LOS POR SANDES (415 TE POSSANDE BONE DO MALEY 1436 OF THE SANDE CONTROL CONTROL 1435 LE COLLECT SANDES OF BILLS THOUGHT TO MALEY 1435 LE COLLECT THOUGHT TO MALE SUSSAN 1435 LE COLLECT THOUGHT TO MALE 145 LE COLLECT THOUGHT TO MALE 145 LE COLLECT THOUGHT TO MALE 145 LE COLLECT THOUGHT TO MALE 155 MATERIAL COLLECT TO MALE 156 LE TENT TO MALE 157 LE COLLECT THOUGHT TO MALE 158 LE C			より
to Seam of C. B. o. S. M. 3.2 to persone to whise to S. M. 4. Description of 18 to S. M. 4. C. ellets to property 4. C. ellets to property 4. C. ellets to property 4. Season of 18 to 11 to most 4. Season of 18 to 18	70 13	74 - 88 7 7 3 3	1
to Seam of C. B. o. S. M. 3.2 to persone to whise to S. M. 4. Description of 18 to S. M. 4. C. ellets to property 4. C. ellets to property 4. C. ellets to property 4. Season of 18 to 11 to most 4. Season of 18 to 18	22 12	2 2 3 3 2 5 7 5 5	τ (7)
from tank of CB + S. 1 The Search of CB + S. 1 Some of 131 ds 7 Some of	4 2 2 4	7552 4 7 323 26	5
The Claim of Care of Care of Care of Standard Care of Sta		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 3
The Claim of Care of Care of Care of Standard Care of Sta		9 14 - 2 - 3 - 3 - 3	<u> </u>
The formal for the formal for the formal for the formal formal for the formal formal for the formal for the formal formal formal formal formal formal formal formal for the formal for the formal formal formal formal formal formal formal formal for the formal formal formal formal formal formal formal formal for the formal formal formal formal formal formal formal formal for the formal	+36 35		1
The tark of the ta		ななからす きゅう	ے د
The tark of the ta	9	5 1 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2
The factor of th		2 4 5 2 3 5 C 3 C 3	#2
1 1 2 m 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	£ 9 8 6 8 8	力するのよっちのする	373
1 1 2 m 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 4 3 9 3 4	3 2 20 28 6 2 20 2 2 0 3.	200
1 1 2 m 1 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	134 4 83	2000	9 V
	7 6 2 5 h 4 2	7 2 3 3 5 6 7 5 6 9 7 8 7 8	7
1330			J
	30	2 2 2	
	3	2	
	•** •		₹.,

Converione 245-FB 5 SMEDIES to re pros F(00 15142 wicha Charlet at Certada Project / Client RUDIS, Le AVE S. R. 12 - C. 6, 5/M, + K. P. continue up dating active has 0800 Field blonk prepare Insporting K. S. + C. & . Stor Winds SEQUIN (t personnel sprolar fram of potential Location Newsork, NJ 6x0ecked D055.66 + Beg/1 00 0730 0700 tr/ Asplach like makerias EPA LEAC SERAS CONTRAPARA Rosoff removed Anshed us and of testall rethreves cheak of 12 personnel 4+51/6 Project / Client Awars de Are, Syk / Conduct geo physice (shorter - Nowak (+ persone (C) begins Softer Any to depute SAMPOLE COL ovamured (1-h 1520 1630 200

Date Project / Client Location Dr-5.12 30 Gallon carbo y near starway putrance andsmyle down + carbon samples hist level of blog J. 0+4 51 tc 37-05'01 had less 11 Project/ Client KIVES (de AVE besement LOW Seathle Location Newark, NJ 12/5anna All personne gove bags. of youther oxtentra could not offices RAINER parsinnel (300 9

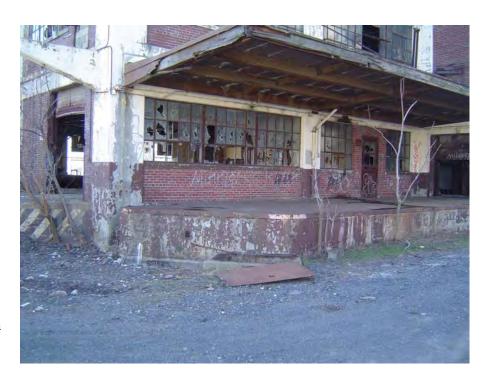
APPENDIX B PHOTO DOCUMENTATION LOG

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 1

Location: Newark, NJ


Photograph Date: March 18,

Site Name: Riverside Avenue Site

2010

Description: View of loading dock and northwest corner of Building #7.

Photo orientation: Facing south

Photograph No. 2

Photograph Date: March 18,

2010

Description: View of southern side of Building #7.

Photo orientation: Facing north

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 3

Location: Newark, NJ

Photograph Date: March 18,

Site Name: Riverside Avenue Site

2010

Description: View of ramp/loading dock area of Building #12.

Photo orientation: Facing east.

Photograph No. 4

Photograph Date: March 18,

2010

Description: View of southern

side of Building 12.

Photo orientation: Facing

northwest.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 5

Location: Newark, NJ

Photograph Date: March 26,

Site Name: Riverside Avenue Site

2010

Description: View of former paint and varnish tanks on third floor of Building #7 (north room).

Photo orientation: Facing east southeast.

Photograph No. 6

Photograph Date: June 21,

2010

Description: View of former paint and varnish tanks on third floor of Building #7 (north room).

Photo orientation: Facing

northeast.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 7

Location: Newark, NJ

Photograph Date: March 26,

Site Name: Riverside Avenue Site

2010

Description: View of former paint and varnish tanks on third floor of Building #7 (south room).

Photo orientation: Facing east, southeast.

Photograph No. 8

Photograph Date: March 26,

2010

Description: View of former paint and varnish tanks on second floor of Building #7 (south room).

Photo orientation: Facing west.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 9

Photograph Date: April 7,

Location: Newark, NJ

Site Name: Riverside Avenue Site

2010

Description: View of drums on first floor of Building #12.

Photo orientation: Facing west.

Photograph No. 10

Photograph Date: April 7,

2010

Description: View of drums and containers on first floor of Building #12.

Photo orientation: Facing west, northwest.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 11

Location: Newark, NJ

Photograph Date: June 8, 2010

Site Name: Riverside Avenue Site

Description: View of Tetra Tech personnel inspecting paint and varnish tanks on third floor of Building #7.

Photo orientation: Facing

northeast

Photograph No. 12

Photograph Date: June 8, 2010

Description: View of Tetra Tech personnel collecting sample from paint or varnish tank on third floor of Building #7.

Photo orientation: Facing

northeast

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 13

Location: Newark, NJ

Photograph Date: June 9, 2010

Site Name: Riverside Avenue Site

Description: View of Tetra Tech personnel using a glove bag to collect a sample of pipe insulation from a pipe on the second floor of Building #7. The insulation is thought to contain asbestos.

Photograph No. 14

Photograph Date: June 9, 2010

Description: View of Tetra Tech personnel using a glove bag to collect a sample of pipe insulation from a pipe on the first floor of Building #7. The insulation is thought to contain asbestos.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 15

Photograph Date: April 9,

Location: Newark, NJ

Site Name: Riverside Avenue Site

2010

Description: View of Tetra Tech personnel collecting a sample from a drum on the first floor of Building #7.

Photo orientation: Facing east

southeast.

Photograph No. 16

Photograph Date: June 8, 2010

Description: View of manhole leading into subbasement of Building #7 (garage bay, south west side). Also location of samples B7-BW-01, B7-BW-03. B7-SED-02 and BW-SED-03.

Photo orientation: Facing south southwest.

Prepared by: Tetra Tech EM Inc.

Photographer: Kevin Scott

Photograph No. 17

Location: Newark, NJ

Photograph Date: June 8, 2010

Site Name: Riverside Avenue Site

Description: View of manhole leading into subbasement of Building #7 (garage bay, south west side). Also location of samples B7-BW-01, B7-BW-03. B7-SED-02, and BW-SED-03.

Photograph No. 18

Photograph Date: June 8, 2010

Description: View of manhole leading into subbasement of Building #7 (garage bay, south east side). Also location of samples B7-BW-02, and BW-SED-04.

Prepared by: Tetra Tech EM Inc. Photographer: Kevin Scott

Photograph No. 19

Photograph Date: April 7,

Location: Newark, NJ

Site Name: Riverside Avenue Site

2010

Description: View of colored pigment material on fourth floor of Building #12. Also location of samples B12-PM-01 and B12-PM-02.

Photo orientation: Facing west, northwest.

Photograph No. 20

Photograph Date: April 9,

2010

Description: View of Tetra Tech personnel collecting a sample from a 5-gallon pail on the first floor of Building #7. (Sample B7-PS-01)

APPENDIX C TRAFFIC REPORTS AND CHAIN-OF-CUSTODY RECORDS

PA Contract Laboratory Program	anic Traffic Report & Chain of Custody Record
USEP/	Orga

40200

Case No:

DAS No:

						j	****		
Region: Project Code:	2			Date Shipped:	6/10/2010	Chain of Custody Record	cord	Sampler Signature	Hos
Account Code:				Carrier name. Airbill:	FedEX 8731 0479 8313	Relinquished By	/ (Date / Time)	Received By	(Date / Time)
CERCLIS ID:	NJSFN0204232	232		Shipped to:	A4 Scientific	1/2/1 C	6/10/10 (800)		
Spill ID:	PC Disconida Associação	1 14/0/140			1544 Sawdust Road Suite 505	2, 2			**************************************
Project Leader:	Kevin Scott		•		The Woodlands TX 77380 (281) 292-5277	ю			The state of the s
Action: Sampling Co:	Removal Action Tetra Tech	tion				4			
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGNO/ PRESERVATIVE	TAG No./ STATION :ERVATIVE Bottles LOCATION	SAMPLE COLLECT DATE/TIME		INORGANIC SAMPLE No.	oc Type

B0002	Waste/ Kevin Scott	H/C	PCBS (14), T-Pestherb (14), T_SEMI (14), T_VOAS (14), VOA	156 (Ice Only), 185 (Ice Only), 580 (Not preserved), 581, 582 (5)	B12-DS-02	S: 6/8/2010	9:15	MB0002	1
B0003	Surface Water/ Kevin Scott	M/G	BNA/PEST (14), VOA (14)	 BNAPEST (14), VOA 117 (loe Only), 118 (loe Only), 120 (14) (loe Only), 121 (HCL), 122 (loe Only), 121 (HCL), 122 (HCL), 123 (HCL), (7) 	B7-BW-01	S: 6/8/2010	7. 7. 5.		Dup of B7-BW-03
B0004	Surface Water/ Kevin Scott	M/G	BNA/PEST (14), VOA (14)	126 (fice Only), 127 (fice Only), 127 (fice Only), 129 (fice Only), 130 (HCL), 131 (HCL), 131	B12-AQ-01 🗸	S: 6/8/2010	0:40		ı
B0005	Waste/ Kevin Scott	H/G	BNA/PEST (14), VOA (14)	139 (Ice Only), 140 (Ice Only), 176 (Ice Only) (3)	B12-PM-01	S: 6/8/2010	10:05	MB0005	l
B0006	Waste/ Kevin Scott	H/G	BNA/PEST (14), VOA (14)	BNA/PEST (14), VOA 143 (Ice Only), 144 (Ice (14) Only), 175 (Ice Only) (3)	B12-PM-02	S: 6/8/2010	10:10	MB0006	
B0007	Oil(High only)/ Kevin Scott	9/H	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	147 (Ice Only), 186 (Ice Only), 565 (Not preserved), 566, 567 (5)	B12-PS-01	S: 6/8/2010	9:20	MB0007	1
B0008	Waste/ Kevin Scott	H/C	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA (14)	159 (Ice Only), 184 (Ice Only), 570 (Not preserved), 571, 572 (5)	B12-DS-01	S: 6/8/2010	9:15	MB0008	1

Shipment for Case Complete? Y	Sample(s) to be	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	· Signature(s):		Chain of Custody Seal Number:
Analysis Key:	Concentration:	Concentration: L=Low, M=Low/Medium, H=High	Type/Designate:	Type/Designate: Composite = C, Grab = G		Shipment Iced?
BNA/PEST = CLP TCL	Semivolatiles and	SNA/PEST = CLP TCL Semivolatiles and Pesticides/PC; PCBS = PCBs(AROCLORS), 1-Pestherb = 1 CLP Pesticide/Herbicide, 1_SEMI = 1 CLP Semivolatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP Volatiles, VOA = CLP TCLP Volatiles, 1_VOAS = 1 CLP Volatiles, VOA = CLP TCLP VOA = CLP TC	(S), T-PestHerb = T	CLP Pesticide/Herbicide, T	_SEMI = TCLP Semivolatiles, 1	_VOAS = TCLP Volatiles, VOA = CLP

TR Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

RECION COPY

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

(Date / Time) 40200 Received By Sampler Signature: (o) (o) (800 (Date / Time) Case No: DAS No: Chain of Custody Record Relinquished By ო A4 Scientific 1544 Sawdust Road Suite 505 The Woodlands TX 77380 (281) 292-5277 8731 0479 8313 6/10/2010 FedEx Date Shipped: Carrier Name: Shipped to: Airbill: Riverside Avenue/NJ Removal Action NJSFN0204232 Kevin Scott Tetra Tech

> Site Name/State: Project Leader:

Action:

Account Code: Project Code:

Region:

CERCLIS ID: Spill ID:

	U &			W-01	ED-03	ED-02			
	9, T	1	İ	Dup of B7-BW-01	Dup of B7-SED-03	Dup of B7-SED-02	•	Ē	
	INORGANIC SAMPLE No.	MB0009			MB0013	MB0014	MB0015		MB0017
	SAMPLE COLLECT DATE/TIME	9:45	12:15	11:20	11:45	11:50	12:30	14:45	13:15
	SAMPLE DAT	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010
4	STATION LOCATION	B12-SED-01∕	B7-BW-02/	B7-BW-03	B7-SED-02	B7-SED-03	B7-SED-04	B7-TAR-01/	RAS-B7-TM-05
	TAGNO/ PRESERVATIVE/ Bottles	179 (Ice Only), 181 (Ice Only), 182 (Ice Only), 187 (Ice Only) (4)	BNA/PEST (14), VOA 188 (HCL), 189 (HCL), 190 (14) (HCL), 191 (Ice Only), 192 (Ice Only), 193 (Ice Only), 194 (Ice Only), 193 (Ice Only),	203 (ice Only), 204 (ice Only), 205 (ice Only), 206 (ice Only), 206 (ice Only), 207 (HCL), 208 (HCL), 208	211 (ice Only), 212 (ice Only), 213 (ice Only) (3)	215 (Ice Only), 216 (Ice Only), 217 (Ice Only) (3)	219 (Ice Only), 220 (Ice Only), 221 (Ice Only) (3)	BNA/PEST (14), VOA 222 (Ice Only), 223 (Ice (14) Only) (2)	226 (Ice Only), 463 (Not preserved), 465 (Not preserved), 466, 467 (5)
	ANALYSIS/ TURNAROUND	BNA/PEST (14), PCBS (14), VOA (14)	BNA/PEST (14), VOA (14)	BNA/PEST (14), VOA (14)	BNA/PEST (14), PCBS (14), VOA (14)	BNA/PEST (14), PCBS (14), VOA (14)	BNA/PEST (14), PCBS (14), VOA (14)	BNA/PEST (14), VOA (14)	PCBS (14), T-PestHerb (14), T_SEMI (14),
	CONC/ TYPE	9/H	M/G	M/G	Ð/H	Ð/H	H/G	H/G	E/G
Tetra Tech	MATRIX/ SAMPLER	Sediment/ Kevin Scott	Surface Water/ Kevin Scott	Surface Water/ Kevin Scott	Sediment/Sludg e/ Kevin Scott	Sediment/Sludg e/ Kevin Scott	Sediment/Sludg e/ Kevin Scott	Waste(High only)/ Kevin Scott	Waste/ Chris Burns
Sampling Co:	ORGANIC SAMPLE No.	60008	B0010	B0012	B0013	B0014	B0015	B0016	B0017

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
BNA/PEST = CLP TCL TCL Volatiles	Semivolatiles and Pesticides/PC, PCBS = PCBs(AROCLOR.	BNAPEST = CLP TCL Semivolatiles and Pesticides/PC, PCBS = PCBS(AROCLORS), 1-PestHerb = 1CLP Pesticide/Herbicide, 1_SEMI = 1CLP Semivolatiles, 1_VOAS = 1CLP Volatiles, VOA = CLP TCL Volatiles	1_VOAS = TCLP Volatiles, VOA = CLP
- - -			

(14)

TR Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

SEPA USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Case No: DAS No:

Region: Project Code:	7			Date Shipped: 6/10/2010 Carrier Name: FedEx	<u>ნ</u>	Chain of Custody Record	Record	Sampler Signature:	* Soft
Account Code:	-					Relinquished By	(Date / Time)	ime) Received By	d By (Date / Time)
CERCLIS ID:	NJSFN0204232	232		to:	-	1, V 1	0) (0)	38)	
Site Name/State:	FC Riverside Avenue/NJ	/enne/NJ		1544 Sawdust Road Suite 505	oad	201			
Project Leader: Action:	Kevin Scott Removal Action	tion		The Woodlands TX 77380 (281) 292-5277	TX 77380				Applicate in the second distriction in
Sampling Co:	Tetra Tech				4				
ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGNOJ PRESERVATIVEJ BOXIBOS	STATION LOCATION	SAMPLE DAT	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	oc Type
B0018 V	Waste/ Chris Burns	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	234 (Ice Only), 235 (Ice Only), 530 (Not preserved), 531, 532 (5)	RAS-B7-TM-09	S: 6/8/2010	13:34	MB0018	Dup. of RAS-B7-TM-10
B0019 V	Waste/ Chris Burns	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	242 (Ice Only), 243 (Ice Only), 470 (Not preserved), 471, 472 (5)	RAS-B7-TM-09-2S	S: 6/8/2010	14:30	MB0019	į
B0020 V	Waste/ Chris Burns	Đ/H	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	250 (Ice Only), 251 (Ice Only), 475 (Not preserved), 476, 477 (5)	RAS-B7-TM-10	S: 6/8/2010	13:30	MB0020	Dup of RAS-B7-TM-09
B0021 V	Waste/ Chris Burns	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	258 (Ice Only), 259 (Ice Only), 480 (Not preserved), 481, 482 (5)	RAS-B7-TM-14A	S: 6/8/2010	9:50	MB0021	ŧ
B0022 V	Waste/ Chris Burns	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	266 (Ice Only), 267 (Ice Only), 485 (Not preserved), 486, 487 (5)	RAS-B7-TM-14B	S: 6/8/2010	10:05	MB0022	ľ
B0023 V	Waste/ Chris Burns	9/H	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA (14)	274 (Ice Only), 275 (Ice Only), 490 (Not preserved), 491, 492 (5)	RAS-B7-TM-17	S: 6/8/2010	12:15	MB0023	i

Shipment for Case Complete? Y	Sample(s) to be use	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
BNA/PEST = CLP TCL TCL Volatiles	Semivolatiles and P	'esticides/PC, PCBS = PCBs(AROCLORS	BNA/PEST = CLP TCL Semivolatiles and Pesticides/PC, PCBS = PCBs(AROCLORS), 1-PestHerb = 1CLP Pesticide/Herbicide, 1_SEMI = 1CLP Semivolatiles, 1_VOAS = 1CLP Volatiles, 1_VOAS = 1CLP Volatiles, 1_VOAS = 1CLP Volatiles, 1_VOAS = 1CLP Volatiles	L_VOAS = TCLP Volatiles, VOA = CLP
	010000	TO NI		

I R Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

USEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Region:

Action:

(Date / Time) 40200 Received By Sampler Signature: <u>3</u> (Date / Time) Case No: DAS No: Chain of Custody Record Relinquished By ო A4 Scientific 1544 Sawdust Road Suite 505 The Woodlands TX 77380 (281) 292-5277 8731 0479 8313 6/10/2010 FedEx Date Shipped: Carrier Name: Shipped to: Airbill: Riverside Avenue/NJ Removal Action NJSFN0204232 Kevin Scott Tetra Tech Site Name/State: Project Leader: Account Code: Project Code: Sampling Co: CERCLIS ID: Spill ID:

oc Jye					Ų.	ınk
, Ł		1	ł	1	Lab QC	Trip Blank
INORGANIC SAMPLE No.	MB0024	MB0025	MB0029	MB0030		
SAMPLE COLLECT DATE/TIME	12:30	12:45	11:00	11:15	8:12	8:07
SAMPLE DAT	S: 6 /8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/9/2010	S; 6/9/2010
STATION LOCATION	RAS-B7-TM-18	RAS-B7-TM-19	RAS-B7-TM-53A	RAS-B7-TM-53B	RAS-FB-01/	RAS-TB-01
TAGNO/ PRESERVATIVE/Bottles	282 (Ice Only), 283 (Ice Only), 495 (Not preserved), 496, 497 (5)	290 (Ice Only), 291 (Ice Only), 500 (Not preserved), 501, 502 (5)	322 (Ice Only), 323 (Ice Only), 520 (Not preserved), 521, 522 (5)	330 (loe Only), 331 (loe Only), 525 (Not preserved), 526, 527 (5)	U/G BNA/PEST (14), VOA 336 (HCL), 337 (HCL), 338 (14) (HCL), 348 (Ice Only), 349 (Ice Only), 350 (Ice Only), 3	331 (Re Chily) (7) 340 (HCL), 341 (HCL), 342 (HCL) (3)
ANALYSIS/ TURNAROUND	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	BNA/PEST (14), VOA (14)	VOA (14)			
CONC/	H/G	H/G	H/G	H/G	0,7	P
MATRIX/ SAMPLER	Waste/ Chris Burns	Waste/ Chris Burns	Waste/ Chris Burns	Waste/ Chris Burns	Field QC/ Chris Burns	Field QC/ Chris Burns
ORGANIC SAMPLE No.	B0024	B0025	B0029	B0030	B0031	B0033

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
BNA/PEST = CLP TCL	Semivolatiles and Pesticides/PC, PCBS = PCBs(AROCLOR)	BNA/PEST = CLP TCL Semivolatiles and Pesticides/PC, PCBS = PCBs(AROCLORS), 1-PestHerb = 1CLP Pesticide/Herbicide, 1_SEMI = TCLP Semivolatiles, 1_VOAS = 1CLP Volatiles, VOA = CLP	1_VOAS = TCLP Volatiles, VOA = CLP
TCL Volatiles			
-			

TR Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

SEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Case No: DAS No:

							, ,
Region: Project Code:	2	Date Shipped: Carrier Name:	6/10/2010 FedEx	Chain of Custody Record	cord	Sampler Signature:	Soft
Account Code:	-	Airbill:	8731 0479 8313	Relinquished By	(Date / Time)	Received By	(Date / Time)
CERCLIS ID:	NJSFN0204232	Shipped to:	A4 Scientific	1 / 2/2 H	(mg) 01 01 9	Q	
Site Name/State:	P.C. Riverside Avenue/NJ		1544 Sawdust Road Suite 505	2			
Project Leader:	Kevin Scott Removal Action		The Woodlands TX 77380 (281) 292-5277	3			
Sampling Co:	Tetra Tech			4			

ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGNO/ PRESERVATIVE/Bottles	STATION LOCATION	SAMPU	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	IIC QC No. Type	
B0034	Waste/ Kevin Phelan	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	354 (Ice Only), 355 (Ice Only), 560 (Not preserved), 561, 562 (5)	B7-CS-03	S: 6/9/2010	9:56	MB0034		
B0035	Waste/ Kevin Phelan	9/H	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VÖAS (14), VÖA	362 (loe Only), 363 (loe Only), 555 (Not preserved), 556, 557 (5)	B7-DS-01	S: 6/9/2010	9:40	MB0035	I	
B0036	Waste/ Kevin Phelan	Ð/H	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	370 (loe Only), 371 (loe Only), 540 (Not preserved), 541, 542 (5)	B7-PS-02	S: 6/9/2010	10:33	MB0036	ı	
B0037	Waste/ Kevin Phelan	H/G	PCBS (14), T-PestHem (14), T_SEMI (14), T_VOAS (14), VOA	378 (loe Only), 379 (loe Only), 535 (Not preserved), 536, 537 (5)	B7-PS-01	S: 6/9/2010	11:04	MB0037	ı	
B0040	Waste/ Kevin Phelan	H/G	T-PestHerb (14), T-SEMI (14), T_SEMI (14), T_VOAS (14), VOA	400 (loe Only), 401 (loe Only), 402 (loe Only), 403 (loe Only), 550 (Not preserved), 551, 552 (7)	B7-DS-02	S: 6/9/2010	14:09	MB0040	1	

Shipment for Case Complete? Y	Sampie(s) to be u	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Signature(s):		Chain of Custody Seal Number:
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate:	Type/Designate: Composite = C, Grab = G		Shipment Iced?
BNA/PEST = CLP TCL (TCL Volatiles	Semivolatiles and	BNA/PEST = CLP TCL Semivolatiles and Pesticides/PC, PCBS = PCBS(AROCLORS), T-PestHerb = TCLP Pesticide/Herbicide, T_SEMI = TCLP Semivolatiles, T_VOAS = TCLP Volatiles, VOA = CLP TCL Volatiles	s), T-PestHerb = T(XLP Pesticide/Herbicide, T	SEMI = TCLP Semivolatiles,	T_VOAS = TCLP Volatiles, VOA = CLP

TR Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

ALCO NOIDE

SEPA Contract Laboratory Program Organic Traffic Report & Chain of Custody Record

Case No:

	Organic Tramic Report & Chain of		Custody Record		DAS No:		∠ _
Region: Project Code:		Date Shipped: Carrier Name:	6/10/2010 FedEx	Chain of Custody Record	cord	Sampler Signeture:	Det Det
Account Code: CERCLIS ID:	NJSFN0204232	Airbill:	8731 0479 8313	Relinquished By	(Date / Time)	Received By	(Date / Time)
Spill ID:	PC	Shipped to:	A4 Scientific 1544 Sawdust Road	14 Drott 6	0/12 (30)	- Prophysical Parks	
Site Name/State:	Riverside Avenue/NJ		Suite 505	75			
Project Leader: Action:	Kevin Scott Removal Action		(281) 292-5277	3			
Sampling Co:	Tetra Tech			4			

ORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGNOJ PRESERVATIVE/ BOLLIes	STATION LOCATION	SAMPLE	SAMPLE COLLECT DATE/TIME	INORGANIC SAMPLE No.	INORGANIC SAMPLE No.	oc Type
B0041	Waste/ Chris Bums	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA (14)	414 (Ice Only), 415 (Ice Only), 416 (Ice Only), 417 (Ice Only), 583 (Not preserved), 584 (Not preserved), 587, 588, 589,	Riverbank-1	S: 6/9/2010	14:00	MB0041		1
B0042	Waste/ Kevin Phelan	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	536 (10) 440 (Ice Only), 441 (Ice Only), 545 (Not preserved), 546, 547 (5)	B7-PS-03	S: 6/9/2010	11:54	MB0042		ı
B0043	Waste/ Kevin Phelan	H/G	PCBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA	450 (Ice Only), 451 (Ice Only), 575 (Not preserved), 576, 577 (5)	B7-CS-02	S: 6/9/2010	11:27	MB0043		1
B0044	Waste/ Chris Burns	H/G	CBS (14), T-PestHerb (14), T_SEMI (14), T_VOAS (14), VOA (14)	593, 596 (Not preserved), 597, 598, 599 (Not preserved) (5)	B7-P-01	S: 6/9/2010	15:15	MB0044		ı

Shipment for Case Complete? Y	Sample(s) to be t	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chai	Chain of Custody Seal Number:
Analysis Key: BNA/PEST = CLD TCL	Concentration:	Concentration: L=Low, M=Low/Medium, H=High	Type/Designate: Composite = C, Grab = G	Ship	Shipment iced?
TCL Volatiles		i cardesar o, robo – robs(Anochora	TCL Volatiles	CLP Semivolatiles, I_VC	DAS = ICLP Volatiles, VOA = CLP

TR Number: 2-232373826-061010-0010

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

F2V5.1.047 Page 6 of 6

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

(Date / Time) 40200 Received By Sampler Signature: į Case No: (Date / Time) DAS No: Chain of Custody Record -Relingdished By ო Bonner Analytical Testing Company 2703 Oak Grove Rd Hattiesburg MS 39402 (601) 264-2854 6/11/2010 FedEx Date Shipped: Carrier Name: Shipped to: Airbili: Riverside Avenue/NJ Removal Action NJSFN0204232 Kevin Scott Tetra Tech

> Site Name/State: Project Leader:

Sampling Co:

Action:

Account Code: Project Code:

Region:

CERCLIS ID: Spill ID:

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAGNO/ PRESERVATIVE/Bottles	STATION	SAMPLE DATE	SAMPLE COLLECT DATE/TIME	ORGANIC SAMPLE No.	ос Туре
MB0002	Waste/ Kevin Scott	HC	T_MET (14), TM/CN (14)	T_MET (14), TM/CN 108 (Ice Only), 579 (2) (14)	B12-DS-02	S: 6/8/2010	9:15	B0002	l
MB0005	Waste/ Kevin Scott	H/G	TM/CN (14)	137 (Ice Only) (1)	B12-PM-01	S: 6/8/2010	10:05	B0005	ı
MB0006	Waste/ Kevin Scott	H/G	TM/CN (14)	141 (Ice Only) (1)	B12-PM-02	S: 6/8/2010	10:10	B0006	1
MB0007	Oil(High only)/ Kevin Scott	H/G	T_MET (14), TM/CN (14)	T_MET (14), TM/CN 145 (Ice Only), 564 (2) (14)	B12-PS-01	S: 6/8/2010	9:20	B0007	I
MB0008	Waste/ Kevin Scott	H/C	T_MET (14), TM/CN (14)	T_MET (14), TM/CN 157 (Ice Only), 569 (2) (14)	B12-DS-01	S: 6/8/2010	9:15	B0008	1 .
MB0009	Sediment/ Kevin Scott	H/G	TM/CN (14)	178 (Ice Only) (1)	B12-SED-01	S: 6/8/2010	9:45	B0009	ı
MB0013	Sediment/Sludg	H/G	TM/CN (14)	210 (Ice Only) (1)	B7-SED-02	S: 6/8/2010	11:45	B0013	Dup of B7-SED-03
MB0014	Kevin Scott Sediment/Sludg e/	H/G	TM/CN (14)	214 (ice Only) (1)	B7-SED-03	S: 6/8/2010	11:50	B0014	Dup of B7-SED-02
MB0015	Kevin Scott Sediment/Sludg	H/G	TM/CN (14)	218 (lœ Only) (1)	B7-SED-04	S: 6/8/2010	12:30	B0015	i
MB0017	Kevin Scott Waste/ Chris Burns	H/G	T_MET (14), TM/CN (14)	T_MET (14), TM/CN 224 (loe Only), 464 (2) (14)	RAS-B7-TM-05	S: 6/8/2010	13:15	B0017	ŧ

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
		T. mar (Danishan dan 1	Chinacat Iood?
Analysis Key:	concentration: L = Low, M = Low/Medium, H = High	lypercesignate. Composite = C, Grab = G	Sulpineiit ised :
T_MET = TCLP Metals,	T_MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide		

2-232373826-061010-0012 TR Number:

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

1 40200 Case No: DAS No:

Region:	2	Date Shipped:	6/11/2010	Chain of Custody Record	cord	Sampler	
Project Code:		Carrier Name.	FOREY				
Account Code:	•	Airbill:	C1	Relinquished By	(Date / Time)	Received By (Date /	(Date / Time)
CERCLIS ID:	NJSFN0204232	Shipped to:	Bonner Analytical Testing	ナンナン	(() ()		
Spill ID:	PC		Company	0 100	7,111	ACCOUNT OF THE PARTY OF THE PAR	
Site Name/State:	Riverside Avenue/NJ		2703 Oak Grove Rd				
Project Leader:	Kevin Scott		Hattiesburg MS 39402 (601) 264-2854	3			
Action:	Removal Action			The state of the s			
Sampling Co:	Tetra Tech			4			
							ı

INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/	ANALYSIS/ TURNAROUND	TAGNO/ PRESERVATIVE/Bottles	STATION	SAMPLE DATE	SAMPLE COLLECT DATE/TIME	ORGANIC SAMPLE No.	ος Α <u>γ</u>
MB0018	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 232 (loe Only), 529 (2) (14)	232 (Ice Only), 529 (2)	RAS-B7TM-09	S: 6/8/2010	13:34	B0018	Dup. of RAS-B7-TM-10
MB0019	Waste/ Chris Burns	Ð/Đ	T_MET (14), TM/CN 240 (loe Only), 469 (2) (14)	240 (loe Only), 469 (2)	RAS-B7-TM-09-2S	S: 6/8/2010	14:30	B0019	ı
MB0020	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 248 (loe Only), 474 (2) (14)	248 (Ice Only), 474 (2)	RAS-B7-TM-10	S: 6/8/2010	13:30	B0020	Dup of RAS-B7-TM-09
MB0021	Waste/ Chris Bums	H/G	T_MET (14), TM/CN 256 (loe Only), 479 (2) (14)	256 (Ice Only), 479 (2)	RAS-B7-TM-14A	S: 6/8/2010	9:50	B0021	ł
MB0022	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 264 (loe Only), 484 (2) (14)	264 (lœ Only), 484 (2)	RAS-B7-TM-14B	S: 6/8/2010	10:05	B0022	1
MB0023	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 272 (loe Only), 489 (2) (14)	272 (Ice Only), 489 (2)	RAS-B7-TM-17	S: 6/8/2010	12:15	B0023	I
MB0024	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 280 (Ice Only), 494 (2) (14)	280 (Ice Only), 494 (2)	RAS-B7-TM-18	S: 6/8/2010	12:30	B0024	ı
MB0025	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 288 (loe Only), 499 (2) (14)	288 (loe Only), 499 (2)	RAS-B7.TM-19	S: 6/8/2010	12:45	B0025	i
MB0029	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 320 (loe Only), 519 (2) (14)	320 (loe Only), 519 (2)	RAS-B7-TM-53A	S: 6/8/2010	11:00	B0029	ł
MB0030	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 328 (loe Only), 524 (2) (14)	328 (loe Only), 524 (2)	RAS-B7-TM-53B	S: 6/8/2010	11:15	B0030	ŧ
MB0034	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 352 (loe Only), 559 (2) (14)	352 (Ice Only), 559 (2)	B7-CS-03	S: 6/9/2010	9:56	B0034	I

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	High Type/Designate: Composite = C, Grab = G	Shipment Iced?
T_MET = TCLP Metals,	T_MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide		

TR Number: 2-232373826-061010-0012

PR provides preliminary results. Requests for preliminary results will increase analytical costs.

Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

USEPA Contract Laboratory Program	Inorganic Traffic Report & Chain of Custody Record
	i >

Case No: DAS No:

								_		, ,	
Region:	2			Date Shipped:	6/11/2010	ਲ	Chain of Custody Record	Record	<i>3</i> 7 6	Sampler // C	+-
Project Code:				Carrier Name:	FedEx				7 A	Signature: 100	1.1
Account Code:	_			Airbill:		Rel	Relinquished By	(Date / Time)	_	Received By	(Date / Time)
CERCLIS ID:	NJSFN0204232	332		Shipped to:	Bonner Apalytical Testing	2 1	7.7	l	4,67,5		
Spill ID:	S				Company			91110	000		
Site Name/State:	e: Riverside Avenue/NJ	enue/ N J	_		2703 Oak Grove Rd	- 2					
Project Leader:	: Kevin Scott				Hattiesburg MS 39402	02					
Action:	Removal Action	uoi			1001, 204-2054	1					
Sampling Co:	Tetra Tech					4					
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC	ANALYSIS/ TURNAROUND	TAGNO/ PRESERVATIVE/ Bottles		STATION LOCATION	SAMPLE DATE	SAMPLE COLLECT DATE/TIME	ORGANIC SAMPLE No.	VIC E No.	oc Type
MB0035	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 360 (Ice (14)	360 (Ice Only), 554 (2)	54 (2)	B7-DS-01	S: 6/9/2010	9:40	B0035		44
MB0036	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 368 (Ice (14)	368 (Ice Only), 539 (2)	39 (2)	B7PS-02	S: 6/9/2010	10:33 E	B0036		i
MB0037	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 376 (Ice (14)	376 (Ice Only), 534 (2)	34 (2)	B7-PS-01	S: 6/9/2010	11:04 E	B0037		ì
MB0040	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 398 (Ice Only), 399 (Ice (14) Only), 549 (3)	398 (Ice Only), 3 Only), 549 (3)	99 (Ice	B7-DS-02	S: 6/9/2010	14:09	B0040		1
MB0041	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 436 (Ice Only), 437 (Ice (14) Only), 585, 586 (4)	436 (Ice Only), 4 Only), 585, 586 (37 (Ice (4)	Riverbank-1	S: 6/9/2010	14:00 E	B0041		į
MB0042	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 438 (Ice (14)	438 (Ice Only), 544 (2)	44 (2)	B7-PS-03	S: 6/9/2010	11:54	B0042		ī

Shipment for Case Complete? Y	Sample(s) to be uso	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
Analysis Key:	Concentration:	: High	Type/Designate: Composite = C, Grab = G	Shipment Iced?
T_MET = TCLP Metals,	, TM/CN = CLP TAL	T_MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide		

TR Number: 2-232373826-061010-0012

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

Į

B0043

11:27

S: 6/9/2010

B7-CS-02

T_MET (14), TM/CN 448 (Ice Only), 574 (2) (14)

S E

Waste/ Kevin Phelan

MB0043

T_MET (14), TM/CN 591, 595 (2) (14)

Ą

Waste/ Chris Burns

MB0044

ŀ

B0044

15:15

S; 6/9/2010

B7-P-01

Inorganic Traffic Report & Chain of Custody Record SEPA Contract Laboratory Program

40200

Case No:

DAS No:

SDG No:

Sample Condition On Receipt FOR LAB USE ONLY ORGANIC SAMPLE No. For Lab Use Only B0013 B0005 B0006 B0007 B0008 B0009 B0014 B0002 Lab Contract No: Lab Contract No: Transfer To: Unit Price: Unit Price: 10:10 11:45 11:50 9:15 10:05 9:15 9:20 9:45 SAMPLE COLLECT DATE/TIME S: 6/8/2010 S: 6/8/2010 6/8/2010 6/8/2010 6/8/2010 6/8/2010 S: 6/8/2010 S: 6/8/2010 (Date / Time) ij ίċ ö B12-SED-01 B7-SED-02 B12-PM-02 B7-SED-03 B12-DS-02 B12-PM-01 B12-DS-01 B12-PS-01 STATION Sampler Signature Received By 8:3 PRESERVATIVE/Bottles T_MET (14), TM/CN 145 (Ice Only), 564 (2) (14) T_MET (14), TIWCN 157 (Ice Only), 569 (2) (14) 108 (Ice Only), 579 (2) (pate / Time) 214 (Ice Only) (1) 137 (Ice Only) (1) 141 (loe Only) (1) 178 (Ice Only) (1) 210 (Ice Only) (1) 9 Chain of Custody Record T_MET (14), TM/CN (14) ANALYSIS/ TURNAROUND TM/CN (14) TM/CN (14) TM/CN (14) TM/CN (14) **TM/CN (14)** Relinguished By CONC. D T Š 9 S T S E <u>უ</u> Š Š 8731 CH79 8324 Bonner Analytical Testing 2703 Oak Grove Rd Hattiesburg MS 39402 (601) 264-2854 Sediment/Sludge Sediment/Sludge Oil(High only)/ Kevin Scott Kevin Scott Kevin Scott Kevin Scott MATRIX/ Sampler Kevin Scott Kevin Scott Kevin Scott Sediment/ 6/11/2010 Waste/ Waste/ Waste/ Waste/ FedEx INORGANIC SAMPLE No. Date Shipped: Carrier Name: Shipped to: MB0002 MB0014 MB0005 MB0008 MB0009 MB0013 MB0006 MB0007 Airbill:

Shipment for Case Complete??	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:	ı; o
Analysis Key:	Concentration: L=Low, M=Low/Medium, H=High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact?	Shipment Iced?
T MET = TCLP Metals,	T MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide	- Address - Addr			

B0015

12:30

6/8/2010

B7-SED-04

218 (Ice Only) (1)

TM/CN (14)

S T

Sediment/Sludge

MB0015

Kevin Scott

B0017

13:15

6/8/2010

ίĠ

RAS-B7-TM-05

T_MET (14), TM/CN 224 (Ice Only), 464 (2) (14)

۵ آ

Kevin Scott Chris Burns

Waste/

MB0017

2-232373826-061010-0012 TR Number:

PR provides preliminary results. Requests for preliminary results will increase analytical costs. Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

F2V51.047 Page 1 of 3

Inorganic Traffic Report & Chain of Custody Record **USEPA Contract Laboratory Program %EPA**

Case No: DAS No: SDG No:

Date Shipped:	6/11/2010	Chain of Custody Record	Sampler Signature:	<u>ق</u> الم	For Lab Use Only	
Name:	Fedex 40-9 a 32 X	Relinquished By (Date / Time)	à	(Date / Time)	Lab Contract No:	
Airbill: 03	Popper Applyfical Testing	1400 1400			Unit Price:	
	Company	2			Transfer To:	
	2703 Oak Glove Ku Hattiesburg MS 39402 (601) 264-2854	3			Lab Contract No:	
	1007 1007 (100)	4			Unit Price:	
INORGANIC SAMPLE No.	MATRIX/ CONC/ SAMPLER TYPE	ANALYSIS' TAGNOJ TURNAROUND PRESERVATIVEJ Bottles	STATION	SAMPLE COLLECT DATE/TIME	टा ORGANIC SAMPLE No.	IC FOR LAB USE ONLY No. Sample Condition On Receipt
MB0018	Waste/ H/G Chris Bums	T_MET (14), TM/CN 232 (Ice Only), 529 (2) (14)	RAS-B7-TM-09	S: 6/8/2010	13:34 B0018	
MB0019	Waste/ H/G Chris Burns	T_MET (14), TM/CN 240 (Ice Only), 469 (2) (14)	RAS-B7-TM-09-2S	S: 6/8/2010	14:30 B0019	
MB0020	Waste/ H/G Chris Bums	T_MET (14), TM/CN 248 (Ice Only), 474 (2) (14)	RAS-B7.TM-10	S: 6/8/2010	13:30 B0020	
MB0021	Waste/ H/G Chris Bums	T_MET (14), TM/CN 256 (Ice Only), 479 (2) (14)	RAS-B7-TM-14A	S: 6/8/2010	9:50 B0021	
MB0022	Waste/ H/G Chris Bums	T_MET (14), TM/CN 264 (Ice Only), 484 (2) (14)	RAS-B7TM-14B	S: 6/8/2010	10:05 B0022	
MB0023	Waste/ H/G Chris Bums	T_MET (14), TM/CN 272 (Ice Only), 489 (2) (14)	RAS-B7-TM-17	S: 6/8/2010	12:15 B0023	
MB0024	Waste/ H/G Chris Burns	T_MET (14), TM/CN 280 (Ice Only), 494 (2) (14)	RAS-B7-TM-18	S: 6/8/2010	12:30 B0024	

Shipment for Case Complete?Y	Sample(s) to be u	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:	ær
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? Shipment Iced?	Shipment Iced?
T_MET = TCLP Metals,	TM/CN = CLP T	T_MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide				

B0025

12:45

S: 6/8/2010

RAS-B7-TM-19

B0029

11:00

S: 6/8/2010

RAS-B7-TM-53A

T_MET (14), TM/CN 320 (Ice Only), 519 (2) (14)

9 1

Chris Burns

Waste/

MB0029

T_MET (14), TM/CN 328 (Ice Only), 524 (2) (14)

H/G

Chris Burns

Waste/

MB0030

T_MET (14), TM/CN 288 (Ice Only), 499 (2) (14)

Ŋ H

Waste/ Chris Burns

MB0025

B0030

11:15

S: 6/8/2010

RAS-B7-TM-53B

TR Number: 2-232373826-061010-0012

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

ZGOU ZKOLYKOMYI

USEPA Contract Laboratory Program	Inomanic Traffic Report & Chain of Custody Record

40200

Case No: DAS No:

				NAME OF THE PROPERTY.		FOR LAB USE ONLY Sample Condition On Receipt
or Lab Use Only	b Contract No:	nit Price:	ansfer To:	b Contract No:	it Price:	ORGANIC SAMPLE No.
	(Date / Time)	п	Tra	La	Un	SAMPLE COLLECT DATE/TIME
XX	Received By					STATION LOCATION
	, (Date / Time)	(0) ((0) (40D	•			TAGNOJ PRESERVATIVE/Bottes
	Relinguished By	125/	2 ,	3	4	ANALYSIS/ TURNAROUND
	75 8324	cal Testing 4	200	39402		CONC/ TYPE
5/11/2010	73/ of,	3onner Analytic	Company 2703 Oak Grov	Hattiesburg MS		MATRIX/ SAMPLER
Date Shipped: (Airhin-	to to				INORGANIC SAMPLE No.
	Date Shipped: 6/11/2010 Chain of Custody Record Signature Signature Signature	Name: FedEx GT 7/ 04 79 6324 Relinquished By (Date / Time) Received By (Date / Time)	Sampler Samp	6/11/2010 Chain of Custody Record Sampler FedEx Signature 8 73	Fed Ex	6/11/2010 Chain of Custody Record Sampler Signature FedEx FedEx (Pate / Time) Received By (Date / Time) A 73 (o 4 7)

MB0034	Waste/ Kevin Phelan	H/G	H/G T_MET (14), TM/CN 352 (Ice Only), 559 (2) (14)	352 (loe Only), 559 (2)	B7-CS-03	S: 6/9/2010	9:56	B0034
MB0035	Waste/ Kevin Phelan	H/G		T_MET (14), TM/CN 360 (Ice Only), 554 (2) (14)	B7-DS-01	S : 6/9/2010	9:40	B0035
MB0036	Waste/ Kevin Phelan	H/G		T_MET (14), TM/CN 368 (Ice Only), 539 (2) (14)	B7-PS-02	S: 6/9/2010	10:33	B0036
MB0037	Waste/ Kevin Phelan	H/G		T_MET (14), TM/CN 376 (1ce Only), 534 (2) (14)	B7-PS-01	S: 6/9/2010	11:04	B0037
MB0040	Waste/ Kevin Phelan	H/G		T_MET (14), TM/CN 398 (Ice Only), 399 (Ice (14) Only), 549 (3)	B7-DS-02	S: 6/9/2010	14:09	B0040
MB0041	Waste/ Chris Burns	H/G	T_MET (14), TM/CN (14)	T_MET (14), TM/CN 436 (Ice Only), 437 (Ice (14) Only), 585, 586 (4)	Riverbank-1	S: 6/9/2010	14:00	B0041
MB0042	Waste/ Kevin Phelan	H/G		T_MET (14), TM/CN 438 (loe Only), 544 (2) (14)	B7-PS-03	S: 6/9/2010	11:54	B0042
MB0043	Waste/ Kevin Phelan	H/G	T_MET (14), TM/CN 448 (14)	448 (Ice Only), 574 (2)	B7-CS-02	S: 6/9/2010	11:27	B0043
MB0044	Waste/ Chris Burns	H/G	T_MET (14), TM/CN 591. (14)	591, 595 (2)	B7-P-01	S: 6/9/2010	15:15	B0044

Shipment for Case Complete ?Y	Sample(s) to be u	nample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:	er:
Analysis Key:	Concentration:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact?	Shipment Iced?
T_MET = TCLP Metals,	TM/CN = CLP TA	T_MET = TCLP Metals, TM/CN = CLP TAL Total Metals and Cyanide	Walling to the state of the sta			

LABORATORY COPY 8-4200: Fax F2V51.047 Page 3 of 3

Charlie LaCerra

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

873104798200 (Airbill#)

EMSL ANALYTICAL, INC. 200 ROUTE 130 NORTH CINNAMINSON, NJ 08077

PHONE: (800) 220-3675 FAX: (856) 786-5974

Company: Tefra	Tech El	m						ame 🔲 Dif structions in Co		1
Street: 7 Creek	Parkway	Suite	700	Th	ird Party Bill	ling re	quires writte	n authorizatio	on from third	party
City: Buthwyn			rovince: 🎤	Zip/Pos	tal Code:	191	01	Cour	itry:	
Report To (Name): (Chris Rur	ni		Fax #:						
Telephone #: 267			70417 1280	Email A	ddress: C	hri	s. burr	s @ Te	traTecl	r.Com
Project Name/Numbe						,-	· · · · · · · · · · · · · · · · · · ·			
Please Provide Resu	lts: ☐ Fax	Email	Purchase Order					mples Take	en: NJ	
	U	Turna 24 Hrs	around Time (TAT)	Options'				<i>⊋ [</i> □ 5 Days	Doxs	10 Days
*For TEM Air 3 hours/6 ho	ours, please call ah	ead to sche	48 Hrs	m charge fo	or 3 Hour TEI	VI AHE	Days RA or EPA L	evel II TAT.	ou will be as	ked to sign
an authorization fo	orm for this service.	Analysis o	completed in accordance	with EMS	L's Terms and	d Con	ditions locate	d in the Analy	tical Price Gu	iide.
PCM - Air			TEM - Air	Dort 76	20		TEM- Dus		D 5755	
□ NIOSH 7400			☐ AHERA 40 CFF	K, Part 76	03			ac - ASTM ASTM D64		
☐ w/ OSHA 8hr. TW/			☐ EPA Level II					Sonication		/ L03/167)
PLM EPA 600/R-93			☐ ISO 10312					/Vermiculi	· .	3-93/10/)
PLM EPA NOB (<1	•		TEM - Bulk					ARB 435 -		ensitivity)
Point Count	70)	ļ	☐ TEM EPA NOB			,		ARB 435 -	•	
☐ 400 (<0.25%) ☐ 10	000 (<0.1%)		☐ NYS NOB 198.4	4 (non-fria	able-NY)			ARB 435 -	•	
Point Count w/Gravime	•		☐ Chatfield SOP		,			ARB 435 -	•	
□ 400 (<0.25%) □ 10	000 (<0.1%)	1	☐ TEM Mass Anal	ysis-EPA	600 sec. 2	2.5	☐ EPA P	rotocol (Sei	ni-Quantita	ative)
☐ NYS 198.1 (friable	in NY)		TEM - Water: EPA	100.2			☐ EPA P	rotocol (Qu	antitative)	
☐ NYS 198.6 NOB (n	on-friable-NY)		Fibers >10µm	Waste	□ Drinking	, [Other:		•	
☐ NIOSH 9002 (<1%)		All Fiber Sizes □	Waste	☐ Drinking	,				
☐ Check For Positive Stop – Clearly Identify F							nous Gro	up		
Samplers Name: Samplers Signature										
Sample #					Area (Air) (Bulk)		/Time npled			
RSA-BK-001	10"Pipewr	p, Is	+ Flr., Bld. 7	hori	zontal P	pe			6 9 10	930
RSA-BK-002	6" Pipewi	np, Ist	-FIR, BILL							
RSA-BK-003		• •	1	horizontal Boe (mochinery) 6/9/10						955
	6 Pipcina	p. 2m	1 Fir, Blot	5 horiz	orul Pipe	ريم أ	inth)		6/9/10	1015
RSA-BK-005	6"Pipewa	p, 2nd	IFIX, Bld 12	, horize	sta Pipe	ەز)	eth)		619/10	1030
RSA-BK-006	10" Pipe wr	ар, Зео	LFIR, BKLTZ, K	Orizonto	1 firel	Nos	(H)	<u>.</u> •	(e)alb	1050
RSA-BK-007	6" Pipe wr	19,3rd		•	ntal fipe		-		6/4/10	1050
13A-BK-008	Willipe was	p,3rd1	The, Bild 12, Yex	tical P	pe (Norch	by M	eur Poen		6/9/10	1055
Client Sample # (s):	•		•			•	Total # of S	Samples:	12	
Relinquished (Client)	Chais Bu	ns	Date:	6/14/	10			Time	: 1200	
Received (Lab):		Mal	EMSL eur Date:	6/16/1	0			Time	: 0900	
Cooler de		correc	tlocationen	6/15/1	o. C/	_				

Asbestos Chain of Custody EMSL Order Number (Lab Use Only):

973104298200 (Ainbill #)

EMSL ANALYTICAL, INC. 107 HADDON AVENUE WESTMONT, NJ 08108

PHONE: (856) 858-4800 FAX: (856) 858-4960

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Sample #	Sample Description	Volume/Area (Air) HA # (Bulk)	Date/T Samp	
RSA-BLOOP	6" Pipe, Bld. 72, 3 pp Fle, Kentral Pipe, (North Bock		6/9/10	1100
RSA-BK-010	18" Pipe wrop, Bld 12 Bosement, horizontal Pipe	<i></i>	6/9/10	1120
	, ,		Glatio	1120
RSA-BK-OU	weathered Pipe wrap on Ground outside Bld.	7 South	6 8110	1430
RSA-BK-OIZ	6" pipewrap, Bb. 7, outside Pipe, horizontal	South	6 8 10	1440
			,	
				, , , , , , , , , , , , , , , , , , ,
*Comments/Special	Instructions:			

APPENDIX D ANALYTICAL SUMMARY TABLES

Table 1 Summary of Volatile Organic Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 1 of 2

Sample Number :		B0017	7	B002	3	B002	4	B00 ⁻	18	E	30020
Sampling Location :		B7-TM-	05	B7-TM-	·17	B7-TM	-18	B7-TM	1-09	B7	'-TM-10
Field QC								DUP of B7	7-TM-10	DUP o	f B7-TM-09
Matrix:		Waste	Э	Wast	е	Wast	е	Was	te	\	Vaste
Units:		ug/L		ug/L	_	ug/L	_	ug/ł	〈 g		ug/Kg
Laboratory		A4 Scien	tific	A4 Scier	ntific	A4 Scier	ntific	A4 Scie	entific	A4	Scientific
Case #:		40200)	4020	0	4020	0	4020	00	4	40200
SDG:		B0023	3	B002	3	B002	3	B000	02	E	30002
Date Sampled :		6/8/201	10	6/8/20	10	6/8/20	10	6/8/20	010	6/	8/2010
Time Sampled :		13:15	5	12:15	5	12:30	0	13:3	34		13:30
Volatile Compound	QL	Result Flag		Result	Flag	Result	Flag	Result	Flag	Result	Flag
Acetone	500			1100	J						
Methylene chloride	250										
2-Butanone	500			110	J						
Methylcyclohexane	250					9.4	J				
4-Methyl-2-pentanone	500			220	J						
Toluene	250			65	J						
2-Hexanone	500			44	J						
Ethylbenzene	250			170	J						
o-Xylene	250			630	J						
m,p-Xylene	250			14	J						
Styrene	250			21	J						
Isopropylbenzene	250			26	J						

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe copmosite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

Table 1 Summary of Volatile Organic Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 2 of 2

Sample Number :		Е	30021	B00)22	B00	25	В0	019	B0044	•	BO	0029	B0030	0
Sampling Location :		B7-	TM-14A	B7-TN	Л-14B	B7-TN	<i>I</i> I-19	B7-TM	1-09-2S	B7-P-0	1	B7-T	M-53A	B7-TM-5	53B
Field QC															
Matrix :		\	Vaste	Wa	ste	Was	ste	Wa	aste	Waste		W	aste	Waste	Э
Units:			ug/Kg	ug	/Kg	ug/l	K g	ug	g/Kg	ug/Kg		ι	ıg/L	ug/L	
Laboratory		A4 :	Scientific	A4 Sc	ientific	A4 Scie	entific	A4 Sc	cientific	A4 Scient	tific	A4 S	cientific	A4 Scien	ntific
Case #:		4	10200	402	200	402	00	40	200	40200		40	200	40200	0
SDG:		E	30002	B00	002	B00	02	В0	002	B0002		BO	0023	B0023	3
Date Sampled :		6/	8/2010	6/8/2	2010	6/8/2	010	6/8/	2010	6/9/201	0	6/8/	/2010	6/8/201	10
Time Sampled :			9:50	10:	:05	12:4	15	14	1:30	15:15		11	1:00	11:15	5
Volatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Acetone	500														
Methylene chloride	250			560	J					780	J				
2-Butanone	500														
Methylcyclohexane	250									3200	J				
4-Methyl-2-pentanone	500														
Toluene	250									3200	J				
2-Hexanone	500														
Ethylbenzene	250									15000	J				
o-Xylene	250									29000	J				
m,p-Xylene	250									65000	J				
Styrene	250														
Isopropylbenzene	250									7700	J				

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe copmosite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

Table 2

Summary of Volatile Organic Compounds Tenatively Identified Compounds Detected in Building 7 Tank Samples Riverside Avenue Site

Page 1 of 2

Sample Number :	B0017			B002	3		В	0021		B0022		T
Sampling Location :	B7-TM-05			B7-TM-	17		B7-1	ΓM-14A		B7-TM-14	·B	
Field QC												
Matrix:	Waste			Waste)		Soil	/Waste		Waste		
Units:	ug/L			ug/L			u	g/Kg		ug/Kg		
Laboratory	A4 Scientific			A4 Scier				Scientific		A4 Scienti	fic	
Case #:	40200			40200)		4	0200		40200		
SDG:	B0023			B002	3		В	0002		B0002		
Date Sampled :	6/8/2010			6/8/20				3/2010		6/8/2010)	
Time Sampled :	13:15			12:15				9:50		10:05		
Volatiles	TIC	Result		TIC	Result	Flag	TIC	Result	Flag	TIC	Result	_
	Unknown-01 (10.41)	840 J		Unknown-01 (10.41)	110		Undecane	22000	JN	Unknown-01 (6.39)	26000	
	Unknown-02 (10.41)	340 J		Total Alkane TICs	46	J				Unknown-02 (6.39)	15000	
	Unknown-03 (10.41)	600 J								Unknown-03 (6.39)	5400	
	Unknown-04 (10.41)	120 J								Unknown-04 (6.39)	14000	
	Unknown-05 (10.41)	210 J								Unknown-05 (6.39)	47000	
	Unknown-06 (10.41)	250 J								Unknown-06 (6.39)	19000	
	Unknown-07 (10.41)	300 J								Unknown-07 (6.39)	31000	
	Benzene, 1,3,5-trimethyl- Benzene, 1-ethyl-4-methyl-	84 J 89 J								Unknown-08 (6.39)	12000	J
	Benzene, 1,2,3-trimethyl-	250 J										
	Benzene, 1,2,3-trimetriyi-	250 3	JIN									

Notes:

No TICs identified in B0024 (B7-TM-18), B0029 (B7-TM-53A), B0030 (B7-TM-53B) and B0025 (B7-TM-19).

ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

P = Pipe copmosite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

TIC = Tentatively identified compound

Table 2

Summary of Volatile Organic Compounds Tenatively Identified Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 2 of 2

Sample Number :	B00	018		B0020			B001	9		B0044		
Sampling Location :	B7-T	M-09		B7-TM-1	0		B7-TM-0	9-2S		B7-P-01		
Field QC	DUP of B	37-TM-10		DUP of B7-T	M-09							
Matrix:	Wa	ste		Waste			Soil/Wa	ste		Waste		
Units:	ug/	/Kg		ug/Kg			ug/K	q		ug/Kg		
Laboratory	A4 Sci	ientific		A4 Scient	ific		A4 Scier	ntific		A4 Scientific		
Case #:	402	200		40200			4020	0		40200		
SDG:	B00	002		B0002			B000	2		B0002		
Date Sampled :	6/8/2	2010		6/8/201	0		6/8/20	10		6/8/2010		
Time Sampled :	13:	:34		13:30			14:30)		15:!5		
Volatiles	TIC	Result	Flag	TIC	Result Fla	0	TC	Result	Flag	TIC		Flag
	Hexanal	9300		Hexanal	5700 JN	Unknown-	01 (10.41)	2500	J	Cyclohexane, 1,4-dimethyl-,	6800	
	Furan, 2-pentyl-	3200		Furan, 2-pentyl-	1900 JN					Benzene, 1-ethyl-2-methyl-	3300	
	Unknown-01 (6.39)	24000		Unknown-01 (6.40)	22000 J					Benzene, 1,2,3-trimethyl-	17000	
	Unknown-02 (6.39)	22000								Benzene, 1-ethyl-2,4-dimethyl-	6800	
	Unknown-03 (6.39)	18000								Benzene, 1,2,4,5-tetramethyl-	2100	
	Unknown-04 (6.39)	11000								Octane, 3-methyl-	17000	
	Unknown-05 (13.24)	2300	J							Nonane	250000	
										Unknown-01 (10.41)	93000	J
											ı	
											į į	
											ı	
											ı	
											ı	
											ı	
											ı	
											ı	
											ı	
											.	
											.	
											.	
											.	
											.	
											<u> </u>	

Notes:

No TICs identified in B0024 (B7-TM-18), B0029 (B7-TM-53A), B0030 (B7-TM-53B) and B0025 (B7-TM-19).

ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

P = Pipe copmosite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

TIC = Tentatively identified compound

Table 3 Summary of Aroclor Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B001	8	В	0020	B00	21	B002	22	В	0019	В	0044
Sampling Location :		B7-TM	-09	B7-	-TM-10	B7-TM	-14A	B7-TM-	-14B	B7-T	M-09-2S	B7	-P-01
Field QC		DUP of B7	-TM-10	DUP of	FB7-TM-09								
Matrix:		Wast	е	V	Vaste .	Was	ste	Was	te	V	/aste	W	aste
Units:		ug/K	g	ι	ıg/Kg	ug/	Kg	ug/k	(g	u	ıg/Kg	u	g/Kg
Laboratory		A4 Scie	ntific	A4 S	Scientific	A4 Scie	entific	A4 Scie	ntific	A4 S	Scientific	A4 S	cientific
Case #:		4020	0	4	0200	402	00	4020	00	4	0200	40	0200
SDG:		B000	2	В	0002	B00	02	B000)2	В	0002	В	8000
Date Sampled :		6/8/20	10	6/8	3/2010	6/8/2	010	6/8/20	010	6/8	3/2010	6/9	/2010
Time Sampled :		13:3	4	1	3:30	9:5	0	10:0	15	1	4:30	1	5:15
Aroclor Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Aroclor-1016	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1221	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1232	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1242	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1248	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1254	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1260	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1262	33		UJ		UJ		UJ		UJ		UJ		UJ
Aroclor-1268	33		UJ		UJ		UJ		UJ		UJ		UJ

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe composite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

U = Not detected above the reported detection limit.

UJ = Not detected above the reported detection limit. Detection limit is approximate.

Aroclor analysis not completed for samples B0017, B0023, B0024, B0025, B0029 and B0030.

Table 4 Summary of Inorganic Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 1 of 2

Sample Number: Sampling Location: Field QC: Matrix: Units: Laboratory Case #: SDG: Date Sampled: Time Sampled:		MB001 B7-TM- Waste mg/kg Bonne 40200 MB00' 6/8/201 1315	05 ; ; ; ; ; ; ; ;	MB002 B7-TM- Waste mg/kg Bonne 40200 MB00 6/8/201 1215	17 e g er o 7	MB002 B7-TM- Waste mg/kg Bonne 40200 MB00 6/8/201 1230	18 9 9 9 7 7	MB002 B7-TM- Waste mg/kg Bonne 40200 MB00 6/8/201 1245	19 5 6 7 7	MB002 B7-TM-5 Waste mg/kg Bonne 40200 MB00 6/8/201	53A e g er O 7	MB003 B7-TM-5 Waste mg/kg Bonne 40200 MB00 6/8/201	53B 5 5 6 7 7	MB00 B7-TM Dup. of B' Was mg/ Boni 402 MB00 6/8/2 13:3	M-09 7-TM-10 ste kg ner 00 018 010 34
ANALYTE	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM ANTIMONY	20 6														
ARSENIC	1														
BARIUM	20	0.7	1	0.16		0.22		0.2							
BERYLLIUM	0.5	0.7	3	0.10	J	0.22	3	0.2	3						
CADMIUM	0.5														
CALCIUM	500	24.5	J	38.1	J	36.3	J	15.8	J	8.4	J	6.1	J		
CHROMIUM	1	0.048	-			00.0				0		0.04	_		
COBALT	5	0.035	J												
COPPER	2.5													0.1	J
IRON	10	35.8		23.9		12.3		15.6						9.3	
LEAD	1	0.37	J											1.8	
MAGNESIUM	500			7.2	J									4.3	J
MANGANESE	1.5	2.8		30.4		17.4		6.6		0.11	J	0.13	J	0.12	J
MERCURY	0.1					0.049	J	0.071	J	0.06	J	0.041	J		
NICKEL	4														
POTASSIUM	500														
SELENIUM	3.5														
SILVER	1														
SODIUM	500													13.4	J
THALLIUM	2.5														
VANADIUM	5				l.		١. ا								
ZINC	6	0.95	J	0.069	J	0.26	J								
CYANIDE	2.5														

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

mg/Kg = Milligrams per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe composite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

Table 4 Summary of Inorganic Compounds Detected in Building 7 Tank Samples Riverside Avenue Site Page 2 of 2

Sample Number :		MBC		MB001		MB002		MB002		MB0037		MB00-	
Sampling Location :		B7-T	-	B7-TM-09	9-28	B7-TM-	14A	B7-TM-1	14B	B7-PS-0	1	B7-P-0	01
Field QC:		Dup. of E		10/		10/		10/		01		10/	
Matrix :		Wa		Waste		Wast	-	Waste		Soil		Wast	_
Units:		mg		mg/kg	•	mg/k		mg/kg		mg/Kg		mg/k	
Laboratory		Bon	-	Bonne		Bonne	-	Bonne		Bonner		Bonne	-
Case #:		402		40200		4020		40200		40200	_	4020	
SDG:		MBC		MB001	_	MB00 ⁻	-	MB001	-	MB0037		MB00	
Date Sampled :		6/8/2		6/8/201		6/8/20	-	6/8/201	-	6/9/2010	ט	6/9/20	-
Time Sampled :		13:	:30	14:30)	9:50)	10:05	,	11:04		1515	5
ANALYTE	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20			13.2								41.6	
ANTIMONY	6												
ARSENIC	1											0.54	J
BARIUM	20									14.4	J	7.8	J
BERYLLIUM	0.5												
CADMIUM	0.5			0.032	J							0.42	J
CALCIUM	500											224	J
CHROMIUM	1			0.16	J							1.7	
COBALT	5											304	
COPPER	2.5			9.7								3.3	
IRON	10	5.4		30.6								2910	J
LEAD	1	1.5		10.3		1.4		3.4				1110	J
MAGNESIUM	500	4.6	J	17.6	J							38.2	J
MANGANESE	1.5	0.11	J	2.9				0.12	J			44.7	
MERCURY	0.1	0.049	J					0.075	J				
NICKEL	4											2.2	J
POTASSIUM	500											36.5	J
SELENIUM	3.5											0.64	J
SILVER	1												
SODIUM	500	13.1	J	10.6	J	1.5	J	3.3	J	21.2	J	169	J
THALLIUM	2.5					5.8							
VANADIUM	5											0.62	J
ZINC	6			63.3						70.5		79.6	J
CYANIDE	2.5												

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

mg/Kg = Milligrams per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe composite sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TM = Tank material

Table 5 Summary of TCLP Results Detected in Building 7 Tank Samples Riverside Avenue Site Page 1 of 3

		B0017 (M	B0017)	B002	23 (MB0023)	B0024 (I	MB0024)	B0029 (I	MB0029)	B0030 (MB0030)	B0021 (MB0021)
		B7-TM	I-05	В	7-TM-17	B7-T	M-18	B7-T	M-53A	B7-T	M-53B	B7-TI	M-14A
		Was	te		Waste	Wa	ste	Wa	ste	Wa	aste	Wa	aste
		ug/	L		ug/L	u	g/L	u	a/L	u	g/L	uc	ı/Kg
				A4		A4 Sc	ientific		_	A4 Sc	cientific	A4 Sc	cientific
													200
			-	B001		-		_				_	
													2010
					12:15								:50
ſ	TCLP				-								
QL	Regulatory Limit	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
													R
													R
10	200000		R	8	J		R				R		R
5	6000		R		R		R		R		R		R
5	500		R		R		R		R		R		R
5	500		R		R		R		R		R		R
5	500		R		R		R		R		R		R
5	500		R		R		R		R		R		R
5	700		R		R		R		R		R		R
5	100000		R		R		R		R		R		R
5	7500		R		R		R		R		R		R
5	200000		U		U		U		U		U		U
5	200000		U		U		U		U		U		U
5	200000		U		U		U		U		U		U
5	3000		U		U		U		U		U		U
5	2000		U		U		U		U		U		U
5	500		U		U		U		U		U		U
5	2000		U		U		U		U		U		U
5	400000		U		U		U		U		U		U
5	130		Ü		Ü		Ü		Ü		Ū		Ü
5	130		Ü		Ü		Ü		Ü		Ū		Ü
10	100000		Ü		Ü		Ü		Ü		Ū		Ü
5			Ü		Ü		Ü		Ü		Ū		Ü
0.05			UJ	No Re	sult Reported		-		UJ		UJ		UJ
0.05													UJ
					'								UJ
0.1													UJ
0.5	-												UJ
													UJ
					'								UJ
													UJ
			50									23	J
0.5					LI LI		_		_		_	2.0	UJ
			UJ		-		_		_		_		UJ
													UJ
									_		_		U
			_		-		_		_		Ü		U
-			U		-		_		_		•	25.1	U
			11		-		_					23.1	U
-			-		-		-		_		_		U
10	5000		IJ		U		U		UJ		UJ		U
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	QL Regulatory Limit 5 200 5 700 10 200000 5 6000 5 500 5 500 5 500 5 500 5 700 5 20000 5 200000 5 200000 5 20000 5 2000 5 2000 5 2000 5 2000 5 2000 5 2000 5 300 5 2000 5 300 5 130 10 100000 5 5000 2.05 400 1.05 30 0.05 30 0.05 30 0.05 30 0.05 30 0.05 1000 10 <t< td=""><td>B7-TM Was ug/ A4 Scie B0017 (M 6/8/20 13:1 TCLP Regulatory Limit 5 200 5 700 10 200000 5 6000 5 500 5 500 5 500 5 700 5 100000 5 200000 5 200000 5 200000 5 3000 5 20000 5 3000 5 500 5 500 5 500 5 7500 5 200000 5 3000 5 5000 5 3000 5 5000</td><td> B7-TM-05 Waste ug/L</td><td> B7-TM-05</td><td> B7-TM-05</td><td> B7-TM-05</td><td> B7-TM-05 B7-TM-17 B7-TM-18 Waste ug/L</td><td> B7-TM-05</td><td> B7-TM-05</td><td> Waste</td><td> B7-TM-05</td><td> B7-TM-05 B7-TM-17 B7-TM-18 B7-TM-53A B7-TM-53B B7-TM-5</td></t<>	B7-TM Was ug/ A4 Scie B0017 (M 6/8/20 13:1 TCLP Regulatory Limit 5 200 5 700 10 200000 5 6000 5 500 5 500 5 500 5 700 5 100000 5 200000 5 200000 5 200000 5 3000 5 20000 5 3000 5 500 5 500 5 500 5 7500 5 200000 5 3000 5 5000 5 3000 5 5000	B7-TM-05 Waste ug/L	B7-TM-05	B7-TM-05	B7-TM-05	B7-TM-05 B7-TM-17 B7-TM-18 Waste ug/L	B7-TM-05	B7-TM-05	Waste	B7-TM-05	B7-TM-05 B7-TM-17 B7-TM-18 B7-TM-53A B7-TM-53B B7-TM-5

Table 5 Summary of TCLP Results Detected in Building 7 Tank Samples Riverside Avenue Site Page 2 of 3

Sample Number :				(MB0022) ГМ-14B		(MB0025) -TM-19		9 (MB0019) TM-09-2S	B0044/I B7-I	MB0044	,	MB0018) M-09	,	MB0020) M-10
Sampling Location :			B/-1	I IVI-14B	В/-	- I W-19	В/-	1 W-09-25	B/-I	2-01				-
Field QC			٠									3 7 -TM-10		37-TM-09
Matrix :				/aste		/aste		Waste		ste	-	ste	-	ste
Units :				ıg/Kg		ıg/Kg		ug/Kg		g/L		/Kg		/Kg
Laboratory			_	Scientific		Scientific		Scientific	A4 Sc			ientific		ientific
Case #:				0200		0200		40200		200		200	_	200
SDG:				(MB0002)	`	B0025)		3 (MB0002)	,	MB0025)	,	/IB0002)	`	/IB0002)
Date Sampled :				3/2010		3/2010		/8/2010	6/9/2			2010		2010
Time Sampled :			1	0:05	1	2:45		14:30	15	:15	13	:34	13	:30
	01	TCLP	D 1		D 1	-	D 1	-	D 1		D 1	-	D 1	-
Compound Vinyl chloride	QL 5	Regulatory Limit 200	Result	Flag R	Result	Flag	Result	Flag R	Result	Flag R	Result	Flag R	Result	Flag U
1,1-Dichloroethene	5 5	200 700		R				R R		R R		R		U
,	_													U
2-Butanone	10	200000		R				R		R		R		-
Chloroform	5	6000		R				R	1.2	J		R		U
Carbon tetrachloride	5	500		R				R		R		R		U
Benzene	5	500		R				R		R		R		U
1,2-Dichloroethane	5	500		R				R		R		R		U
Trichloroethene	5	500		R				R		R		R		U
Tetrachloroethene	5	700		R				R		R		R		U
Chlorobenzene	5	100000		R				R		R		R		U
1,4-Dichlorobenzene	5	7500		R				R		R		R		U
2-Methylphenol	5	200000		R				U		U		U		U
3-Methylphenol + 4-Methylphenol	5	200000		R				U		U		U		U
Total Cresol	5	200000		U				U		U		U		U
Hexachloroethane	5	3000		U				U		U		U		U
Nitrobenzene	5	2000		Ū				Ü		Ü		Ū		Ü
Hexachlorobutadiene	5	500		Ü				Ü		Ü		Ü		Ü
2,4,6-Trichlorophenol	5	2000		Ü				Ü		Ü		Ü		Ü
2,4,5-Trichlorophenol	5	400000		Ü				Ü		Ü		Ü		Ü
2,4-Dinitrotoluene	5	130		Ü				Ü		Ü		Ü		Ü
Hexachlorobenzene	5	130		Ü				Ü		Ü		U		Ü
Pentachlorophenol	10	100000		Ü				Ü		U		U		U
Pyridine	5	5000		U				U		U		U		U
gamma-BHC (Lindane)	0.05	400		UJ				UJ	No Booult	Reported		UJ		UJ
` ,										•				
Heptachlor	0.05	8		UJ				UJ	No Result			UJ		UJ
Heptachlor epoxide	0.05	8		UJ				UJ	No Result			UJ		UJ
Endrin	0.1	20		UJ				UJ	No Result			UJ		UJ
Methoxychlor	0.5	10000		UJ				UJ	No Result			UJ		UJ
alpha-Chlordane	0.05	30		UJ				UJ	No Result			UJ		UJ
gamma-Chlordane	0.05	30		UJ				UJ	No Result	•		UJ		UJ
Toxaphene	5	500		UJ				UJ	No Result			UJ		UJ
2,4-D	2.5	10000		UJ		UJ		UJ		UJ	2.2	J		UJ
2,4,5-TP (Silvex)	0.5	1000		UJ		UJ		UJ		UJ		UJ		UJ
Arsenic	10	5000		UJ		UJ		U		UJ		UJ		UJ
Barium	200	100000		UJ		U		UJ		U		UJ		UJ
Cadmium	5	1000		U		U		U		U		U		U
Chromium	10	5000		U		U		U		U		U		U
Lead	10	5000	47.1	ĺ		UJ	44.7			UJ	28.9		32.6	
Mercury	0.2	200		U		U		U		U		U		U
Selenium	35	1000		Ü		UJ		Ü		UJ		Ü		Ü
Silver	10	5000		Ŭ		UJ		Ŭ		UJ		Ü		Ü

Table 5 Summary of TCLP Results Detected in Building 7 Tank Samples Riverside Avenue Site Page 3 of 3

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

Shaded cell indicates analytical results not received.

Sample number for organic analysis starts with "B", sample number for inorganic analysis (shown in paraenthesis) starts with "MB"

ug/l = micrograms per liter

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

P = Pipe compostie sample

QC = Quality Control

QL = Quantitation limit.

R = Unsuable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

SDG = Sample Delivery Group

TCLP = Toxicity Characteristic Leaching Procedure

TM = Tank material

U = Not detected above the reporting detection limit.

UJ = Not detected above the reporting detection limit. Reporting detection limit is estimated.

Table 6 **Summary of Volatile Organic Compounds** Detected in Drum and Container Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B0040	0	B00	142	B003	35	В0	036	B0	037	B00-	43	B0034	1	B0002	2	В0	007	B00	800
Sampling Location :		B7-DS-	02	B7-P	S-03	B7-DS	-01	B7-F	PS-02	B7-F	S-01	B7-C3	S-02	B7-CS-	03	B12-DS-	02	B12-l	PS-01	B12-D	S-01
Field QC																					
Matrix:		Waste	е	Was	ste	Wast	te	Wa	aste	Wa	ste	Was	ste	Waste	9	Waste		C	Dil	Was	ste
Units:		ug/Kg	g	ug/	Kg	ug/L	_	u	g/L	ug	g/L	ug/	/L	ug/Kg	9	ug/Kg	1	ug	/Kg	ug/	'Kg
Laboratory		A4 Scien	ntific	A4 Sci	entific	A4 Scie	ntific	A4 Sc	cientific	A4 Sc	ientific	A4 Scie	entific	A4 Scien	tific	A4 Scien	tific	A4 Sc	eientific	A4 Sci	entific
Case #:		40200	0	402	00	4020	00	40	200	402	200	402	00	40200)	40200)	40:	200	402	200
SDG:		B0002	2	B00	02	B000)2	В0	023	B0	023	B00	23	B0002	2	B0002	2	В0	002	B00	002
Date Sampled :		6/9/201	10	6/9/2	010	6/9/20	010	6/9/	2010	6/9/2	2010	6/9/2	010	6/9/201	10	6/8/201	0	6/8/	2010	6/8/2	2010
Time Sampled :		14:09	9	11:	54	9:40)	10	:33	11	:04	11:2	27	9:56		9:15		9:	20	9:1	15
Volatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Acetone	500															39000	J	13000000	J		
Methyl acetate	250											110	J	410	J	11000	J				
Methylene chloride	250	380	J													5500	J			32000	J
Methyl ter-butyl ether	250															3100	J				
2-Butanone	500																	67000	J		
Cyclohexane	250															13000	J				
Bromochloromethane	250																			2300	J
1,1,1-trichloroethane	250															2100	J				
Methylcyclohexane	250																				
Carbon tetrachloride	250															720	J				
Toluene	250	4100	J																		
Ethylbenzene	250	250000	J																		
o-Xylene	250	390000	J																		
m,p-Xylene	250	710000	J																		
Isopropylbenzene	250	21000	J																		

Notes:

Empty cell indicates parameter not detected above the reported detection limit. Shaded cell indicates analytical results not received.

ug/Kg = micrograms per kilogram B7 = Building 7

CS = Container sample

DS = Drum sample
Flag = Data qualifier
J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PS = Pail Sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Table 7
Summary of Volatile Organic Compounds
Tenatively Identified Compounds
Detected in Drums and Container Samples
Page 1 of 2

Sample Number :	B0040			B0042			B0016		B0037	
Sampling Location:	B7-DS-02			B7-PS-0	3		B7-TAR-01		B7-PS-01	
Field QC										
Matrix:	Waste			Waste			Waste		Waste	
Units:	ug/Kg			ug/Kg			ug/Kg		ug/L	
Laboratory	A4 Scientific			A4 Scient	ific		A4 Scientific		A4 Scientific	
Case #:	40200			40200			40200		40200	
SDG:	B0002			B0002			B0005		B0023	
Date Sampled :	6/8/2010			6/8/201	0		6/8/2010		6/9/2010	
Time Sampled:	14:09			11:54			14:45		11:04	
Volatiles	TIC	Result	Flag	TIC	Result	Flag	TIC	Result Flag	TIC	Result
	Benzene, propyl-	5800	JN	Unknown-01 (6.39)	15000	J	Bicyclo[3.2.1]octane	2200 JN	Unknown-01 (13.25)	48
	Benzene, 1-ethyl-2-methyl- (01)	31000	JN	Unknown-02 (6.39)	9500	J	Benzene, 1-ethyl-2-methyl- (01)		Unknown-02 (13.25)	45
	Benzene, 1,2,3-trimethyl- (01)	18000	JN				Benzene, 1,2,3-trimethyl- (01)		Unknown-03 (13.25)	8000
	Benzene, 1-ethyl-2-methyl- (02)	11000	JN				Benzene, 1-ethyl-2-methyl- (02)	3900 JN	Unknown-04 (13.25)	27
	Benzene, 1,2,3-trimethyl- (02)	47000	JN				Benzene, 1,2,3-trimethyl- (02)	16000 JN		1
	Benzene, 1,2,3-trimethyl- (03)	16000	JN				Unknown-01 (12.88)	1800 J		
	Benzene, 1-propenyl-	6400	JN				Benzene, 1,2,3-trimethyl- (03)	9800 JN		
	Benzene, 2-ethyl-1,4-dimethyl-	5500	JN				Benzene, 1-ethyl-3,5-dimethyl-	12000 JN		
	Benzene, 1-ethyl-2,4-dimethyl-	4600	JN				Benzene, 2-ethyl-1,4-dimethyl- (01)	5000 JN		1
	Benzene, 1,2,3,4-tetramethyl-	4200	JN				Benzene, 1-methyl-2-(1-meth	5700 JN		1
	Benzene, 1,2,4,5-tetramethyl-	3000	JN				Benzene, 4-ethyl-1,2-dimethyl-	11000 JN		
	Unknown-01 (6.39)	3600	J				Indan, 1-methyl-	2300 JN		1
	Unknown-02 (10.41)	1800	J				Unknown-02 (12.88)	7600 J		1
	Unknown-03 (10.41)	2200	J				Unknown-03 (12.88)	2700 J		1
	Unknown-04 (13.24)	1800	J				Benzene, 2-ethyl-1,4-dimethyl- (02)	4100 JN		1
							Benzene, 1,2,4,5-tetramethyl- (01)	6600 JN		1
							Benzene, 1,2,4,5-tetramethyl- (02)	10000 JN		1
							Unknown-04 (12.88)	3300 J		1
							Benzene, 1,2,4,5-tetramethyl- (03)	10000 JN		1
							Benzene, 1-methyl-4-(1-meth (03)	1800 JN		
							Naphthalene, 1,2,3,4-tetrah	3000 JN		
							Unknown-05 (12.88)	3400 J		
							Total Alkane TICs	49000 J		

Notes:

No TICs identified in B0036 (B7-PS-02) or B0008 (B7-DS-01)).

Analytical results not received for sample B0035 (B7-DS-01).

ug/Kg = micrograms per kilogram

CS = Container sample

DS = Drum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

PS = Pail Sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TIC = Tentatively identified compound

Table 7
Summary of Volatile Organic Compounds
Tenatively Identified Compounds
Detected in Drums and Container Samples
Page 2 of 2

Sample Number: Sampling Location: Field QC Matrix: Units: Laboratory Case #: SDG:	B0043 B7-CS-02 Waste ug/L A4 Scientific 40200 B0023			B0034 B7-CS-03 Waste ug/Kg A4 Scientific 40200 B0002		B0002 B12-DS-02 Waste ug/Kg A4 Scientific 40200 B0002			B0007 B12-PS-01 Oil ug/Kg A4 Scientific 40200 B0002		
Date Sampled : Time Sampled :	6/9/2010 11:27			6/8/2010 9:56		6/8/2010 9:15			6/8/2010 9:20		
Volatiles	TIC	Result	Flag	TIC	Result	TIC	Result	Flag	TIC	Result	Flag
	Unknown-01 (10.42) Unknown-02 (10.42) Unknown-03 (10.42) Unknown-04 (10.42) Unknown-05 (10.42) Unknown-06 (10.42) Unknown-07 (10.42) Unknown-08 (10.42) Pentane, 1-iodo- Unknown-09 (13.24) Octanoic acid, methyl ester Butanoic acid, 3-hexenyl es	420 520 250 770 2900 4100 3400 670 43 92 380 2900	Z C C C C C C C C C C C C C C C C C C C	Unknown-01 (13.24)	1600	Unknown-01 (6.40) Unknown-02 (6.40) Unknown-03 (6.40)	20000 33000 44000	J	1,3-Butadiene, 2-methyl- Propanal, 2-methyl- 2,3-Dihydrofuran .betaMyrcene .alphaPhellandrene 1,3-Cyclohexadiene, 1-methy 1,3,6-Octatriene, 3,7-dimet (01) d-Limonene 1,3,6-Octatriene, 3,7-dimet (02) 1,4-Cyclohexadiene, 1-methy Cyclohexadiene, 1-methyl-4-(1 cis-Linaloloxide (01) cis-Linaloloxide (02) 1,6-Octadien-3-ol, 3,7-dime Unknown-04 (13.24) 3-Cyclohexene-1-methanol, Unknown-01 (6.40) Unknown-02 (10.41) Unknown-03 (10.41)	120000 45000 41000 330000 47000 80000 200000 560000 220000 160000 230000 260000 480000 140000 110000	

Notes:

No TICs identified in B0036 (B7-PS-02) or B0008 (B7-DS-01)).

Analytical results not received for sample B0035 (B7-DS-01).

ug/Kg = micrograms per kilogram

CS = Container sample

DS = Drum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

PS = Pail Sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TIC = Tentatively identified compound

Table 8 Summary of Aroclor Compounds Detected in Drum and Container Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B003	5	Е	30040	B004	12	B00	34	В	30002	B00	007	B00	08
Sampling Location :		B7-DS-	01	B7	-DS-02	B7-PS	-03	B7-C3	3-03	B12	2-DS-02	B12-F	PS-01	B12-D	S-01
Field QC															
Matrix:		Waste	Э	V	Vaste	Wast	te	Was	ste	V	Vaste	0	il	Was	ste
Units:		ug/L		ι	ıg/Kg	ug/K	(g	ug/l	Kg	ı	ug/Kg	ug	/Kg	ug/l	Kg
Laboratory		A4 Scien	ntific	A4 S	Scientific	A4 Scie	ntific	A4 Scie	entific	A4 S	Scientific	_	ientific	A4 Scie	
Case #:		40200)	4	0200	4020	00	402	00	4	0200	402	200	4020	00
SDG:		B0002	2	В	80008	B000	08	B00	02	В	30002	B00	002	B00	02
Date Sampled :		6/9/201	10	6/9	9/2010	6/9/20	010	6/9/2	010	6/8	8/2010	6/8/2	2010	6/8/2	010
Time Sampled :		9:40		1	14:09	11:5	4	9:5	6		9:15	9:	20	9:1	5
Aroclor Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Aroclor-1016	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1221	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1232	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1242	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1248	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1254	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1260	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1262	33		UJ		UJ		UJ		UJ		R				UJ
Aroclor-1268	33		UJ		UJ		UJ		UJ		R				UJ

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

Shaded cell indicates analysis not completed.

ug/Kg = micrograms per kilogram

B7 = Building 7

CS= Container sample

DS = Drum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PS = Pail Sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

UJ = Analyte not detected above reported detection limit. Detection limit is estimated.

U = Analyte not detected above reported detection limit.

Aroclor analysis not completed for samples B0036, B0037 and B0043.

Table 9 **Summary of Inorganic Compounds Detected in Drum and Container Samples Riverside Avenue Site** Page 1 of 1

Sample Number :		MB0035	MB004	12	MB0036	;	MB0040	n	MB004	15	MB003	4	MB000	18	MB00	7	MB0002
Sampling Location :		B7-DS-0			B7-PS-0		B7-DS-0	-	B7-CS-	-	B7-CS-0		B12-DS-		B12-PS		B12-DS-02
Field QC:		B. 20 0			5, 100,	_	<i>D. D</i> 0	,_	D1 00	02	<i>D.</i> 00 0	,0	D12 D0	01	51210	01	D12 D0 02
Matrix :		Waste	Wast	_	Waste		Waste		Waste	2	Waste		Waste		Oil		Waste
Units:		mg/kg	mg/k		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg		mg/kg	,	mg/kg
Laboratory		Bonner	Bonne	-	Bonner		Bonner		Bonne	-	Bonne		Bonne		Bonne	_	Bonner
Case #:		40200	4020		40200		40200		40200		40200		40200		40200		40200
SDG:		MB0008			MB007		MB007		MB00		MB000		MB000		MB00	-	MB0008
Date Sampled :		6/9/2010			6/9/2010		6/9/201		6/17/20		6/9/201	-	6/8/201	-	6/8/20		6/8/2010
Time Sampled :		940	1154	-	1033		1409	•	1000	-	956	U	915		920	.0	915
Time Gampied .		340	110-		1000		1400		1000		330		310		320		313
ANALYTE	QL	Result	Flag Result	Flag R	esult l	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result Flag
ALUMINUM	20	6190	14.6	J	3.5 J	J	6.4	J			8760		15.8	J			1080
ANTIMONY	6																
ARSENIC	1	1.1									4.8						6.8
BARIUM	20	149	2	J	182		0.29	J	0.51	J	259		5.5	J			55.4
BERYLLIUM	0.5	1.2									0.51						1.6
CADMIUM	0.5	0.25	J 0.073	J							0.84						0.069 J
CALCIUM	500	8200	124	J	114 J	J	161	J	19.1	J	59400		287	J			1460 J
CHROMIUM	1	16.8			0.14	J	6.5		0.43	J	14.4		0.11	-	0.056	J	11.4 J
COBALT	5	10.2	0.23	J							6.8		0.06	J			5.7
COPPER	2.5	5	1.4	J	41.2		1.1	J	0.1	J	23.1		9.1				22.4 J
IRON	10	5620		J	25.9		198		511		6870	J	37.2	J	1.9	J	3850 J
LEAD	1	8.7	J 3.4	J	3.6		2.5		0.74		18.1	J					
MAGNESIUM	500	4630	10	J	3.1	J	31.9	J			4990		164	J			210 J
MANGANESE	1.5	65.1	J 4.7		0.97		2.5		1.5		812		3.8				51.3 J
MERCURY	0.1				0.1						0.11	J	0.052	J			
NICKEL	4	9.7	1.9	J							27.1		0.49	J			26.3
POTASSIUM	500	987	42.9	J							4970		5510				91.1 J
SELENIUM	3.5	0.89	J								1.4	J					1.6 J
SILVER	1										0.79	J					
SODIUM	500	216	J 336	J					1120		12900	J	428	J			143 J
THALLIUM	2.5																
VANADIUM	5	20.9									86.3						12.4
ZINC	6	121	J 23.2	J	409		6.8				156	J			0.13	J	
CYANIDE	2.5	3.6	J						0.61	J							

Notes:

mg/Kg = Milligrams per kilogram

Empty cell indicates parameter not detected above the reported detection limit. B7 = Building 7

CS = Container sample

DS = Drum sample

Flag = Data qualifier

PS = Pail Sample
QC = Quality Control
QL = Quantitation limit

SDG = Sample Delivery Group

Table 10 Summary of TCLP Results Detected in Drum and Container Samples Riverside Avenue Site Page 1 of 3

Sample Number :			B0040/	MB0040	B0042/N	1B0042	Р	30035/MB0035	B0036/I	MB0036	B0037	MB0037
Sampling Location :				S-02	B7-P3		_	B7-DS-01		S-02		PS-01
Field QC								5. 50 0.		0 02		
Matrix :		Waste		Waste		Waste		Waste		Waste		
Units:		ug/L		ug			ug/L			ug/L		
Laboratory			A4 Scientific		A4 Scientific			A4 Scientific	ug/L A4 Scientific		A4 Scientific	
*				200	40200		40200		40200		40200	
Case #:			B0002 (MB0025)		B0002		B0002 (MB0025)		B0023 (MB0025)		B0023 (MB0025)	
SDG: Date Sampled :			6/9/2010		6/9/2010		6/9/2010			2010	6/9/2010	
Time Sampled :			14:09		11:54			9:40		:33		:04
Time Sampled .	ı	TCLP	17	.03	11.	J -1		3.40	10.	.55		.04
Compound	QL	Regulatory Limit	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Vinyl chloride	5	200		R		R		R		R		R
1,1-Dichloroethene	5	700		R		R		R		R		R
2-Butanone	10	200000		R		R		R		R		R
Chloroform	5	6000		R		R		R		R		R
Carbon tetrachloride	5	500		R		R		R		R		R
Benzene	5	500		R		R		R		R		R
1,2-Dichloroethane	5	500		R		R		R		R		R
Trichloroethene	5	500		R		R		R		R		R
Tetrachloroethene	5	700		R		R		R		R		R
Chlorobenzene	5	100000		R		R		R		R		R
1,4-Dichlorobenzene	5	7500		R		R		R		R		R
	5	200000		U		U		U U		U		U
2-Methylphenol	5 5	200000		U		U		U		U		U
3-Methylphenol + 4-Methylphenol	5 5			U		U		U		U		U
Total Cresol		200000		-		-		_				U
Hexachloroethane	5	3000		U		U		U		U		_
Nitrobenzene	5	2000		U		U		U		U		U
Hexachlorobutadiene	5	500		U		U		U		U		U
2,4,6-Trichlorophenol	5	2000		U		U		U		U		U
2,4,5-Trichlorophenol	5	400000		U		U		U		U		U
2,4-Dinitrotoluene	5	130		U		U		U		U		U
Hexachlorobenzene	5	130		U		U		U		U		U
Pentachlorophenol	10	100000		U		U		U		U		U
Pyridine	5	5000		U		U		U		U		U
gamma-BHC (Lindane)	0.05	400		UJ		UJ		UJ		UJ		UJ
Heptachlor	0.05	8		UJ		UJ		UJ		UJ		UJ
Heptachlor epoxide	0.05	8		UJ		UJ		UJ		UJ		UJ
Endrin	0.1	20		UJ		UJ		UJ		UJ		UJ
Methoxychlor	0.5	10000		UJ		UJ		UJ		UJ		UJ
alpha-Chlordane	0.05	30		UJ		UJ		UJ		UJ		UJ
gamma-Chlordane	0.05	30		UJ		UJ		UJ		UJ		UJ
Toxaphene	5	500		UJ		UJ		UJ		UJ		UJ
2,4-D	2.5	10000		UJ	1.5	J	4.4	UJ	1.5	J	10	J
2,4,5-TP (Silvex)	0.5	1000		UJ		UJ	4.7	U	0.3	J		R
Arsenic	10	5000		UJ				UJ		UJ		UJ
Barium	200	100000		U				U		U		U
Cadmium	5	1000		Ü				J		Ü		Ü
Chromium	10	5000		Ü				Ü		Ü		Ü
Lead	10	5000		UJ				UJ		UJ		ÚJ
Mercury	0.2	200		U				U		U		U
Selenium	35	1000		UJ				ŰJ		J		UJ
Silver	10	5000		UJ				UJ		ÚJ		UJ
S S1	.0	3000		50			I	JJ		50		

Table 10 Summary of TCLP Results Detected in Drum and Container Samples Riverside Avenue Site Page 2 of 3

			B0043/N B7-C	MB0043 S-02		MB0034) S-03		/MB002 DS-02		MB0007 PS-01	B0008/I B12-E	MB0008 DS-01
Field QC												
Matrix :			Wa	ste	Wa	ste	Wa	aste	С	oil	Wa	ste
Units :				g/L		/Kg	-	g/L	_	g/L		g/L
Laboratory			A4 Scientific		A4 Scientific			_		•	A4 Scientific	
Case #:			40200		40200		A4 Scientific 40200		A4 Scientific 40200		40200	
			B0023 (MB0025)		B008 (MB0002)		B0002/MB002		40200 B0002/MB002		B0002/MB002	
SDG:			6/9/2010		6/9/2010		6/8/2010		6/8/2010		6/8/2010	
Date Sampled : Time Sampled :			11:27		9:56		9:15		9:20		9:15	
Time Sampled .		TCLP	11.	.21	9.	30	J.	13	J.	20	3.	13
Compound	QL	Regulatory Limit	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Vinyl chloride	5	200		R	1	R		R				R
1,1-Dichloroethene	5	700		R		R		R				R
2-Butanone	10	200000		R		R		R				R
Chloroform	5	6000		R		R		R				R
Carbon tetrachloride	5	500		R		R		R				R
Benzene	5	500		R		R		R				R
1,2-Dichloroethane	5	500		R		R		R				R
	5			R				R				R
Trichloroethene		500				R						R
Tetrachloroethene	5	700		R		R		R				
Chlorobenzene	5	100000		R		R		R				R
1,4-Dichlorobenzene	5	7500		R		R		R				R
2-Methylphenol	5	200000		U		U		U				U
3-Methylphenol + 4-Methylphenol	5	200000		U		U		U				U
Total Cresol	5	200000		U		U		U				U
Hexachloroethane	5	3000		U		U		U				U
Nitrobenzene	5	2000		U		U		U				U
Hexachlorobutadiene	5	500		U		U		U				U
2,4,6-Trichlorophenol	5	2000		U		U		U				U
2,4,5-Trichlorophenol	5	400000		U		U		U				U
2,4-Dinitrotoluene	5	130		U		U		U				U
Hexachlorobenzene	5	130		U		U		U				U
Pentachlorophenol	10	100000		U		U		U				U
Pyridine	5	5000	98000	J		U		U				U
gamma-BHC (Lindane)	0.05	400		UJ		UJ		UJ				UJ
Heptachlor	0.05	8		UJ		UJ		UJ				UJ
Heptachlor epoxide	0.05	8		UJ		UJ		UJ				UJ
Endrin	0.1	20		UJ		UJ		UJ				UJ
Methoxychlor	0.5	10000		UJ		UJ		UJ				UJ
alpha-Chlordane	0.05	30		UJ		UJ		UJ				UJ
gamma-Chlordane	0.05	30		UJ		UJ		UJ				UJ
Toxaphene	5	500		UJ		UJ		UJ				UJ
2,4-D	2.5	10000	19	J		UJ	4.5	J	2.4	J		UJ
2,4,5-TP (Silvex)	0.5	1000	19	Ü		UJ	4.5	UJ	2.4	UJ		UJ
Arsenic	10	5000		UJ		UJ	14.9	J	17	J		UJ
Barium	200			U			229		17	UJ		
		100000		U	4.0	U	229	J				UJ
Cadmium	5	1000			4.8	J		U		U		U
Chromium	10	5000		U		U		-	45.0	U		U
Lead	10	5000		UJ		UJ		U	15.3			U
Mercury	0.2	200		U		U	0.13	J		U		U
Selenium	35	1000		UJ		UJ		U		U		U
Silver	10	5000		UJ	I	UJ		U		U		U

Table 10 Summary of TCLP Results Detected in Drum and Container Samples Riverside Avenue Site Page 3 of 3

Notes:

Empty cell indicates parameter not detected above the reported detection limit. Sample number for organic analysis starts with "B", sample number for inorganic Shaded cell indicates analysis not completed.

ug/L = Micrograms per liter

CS = Container sample

DS = srum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the ap

PS = Pail Sample

QC = Quality Control

QL = Quantitation limit

R = Unsuable result. Analyte may or may not be present in the sample. Supporti SDG = Sample Delivery Group

U = Not detected above the reporting detection limit.

UJ = Not detected above the reporting detection limit. Reporting detection limit i

Table 11 Summary of Volatile Organic Compounds Detected in Pigment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B000	5	B0006		
Sampling Location :		B12-PM	I-01	B12-PM-02		
Field QC						
Matrix :	Wast	е	Waste			
Units:	ug/K	g	ug/Kg			
Laboratory		A4 Scier	ntific	A4 Scientific		
Case #:		4020	0	40200		
SDG:		B000	5	B0005		
Date Sampled :		6/8/20	10	6/8/2010		
Time Sampled :	10:05		10:10			
Volatile Compound	QL	Result	Flag	Result	Flag	
Acetone	500	710		270	J	
Methyl acetate	250	230	J	380		
Methylene chloride	250	300		210	J	
Methyl tert-butyl ether	250					
2-Butanone	500					
Bromochloromethane	250					
1,1,1-Trichloroethane	250					
Cyclohexane	250					
Carbon tetrachloride	250					
Toluene	250	4300				
m,p-Xylene	250			91	J	

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B12 = Building 12

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PM = Pigment material

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Table 12 Summary of Volatile Organic Compounds Tenatively Identified Compounds Detected in Pigment Samples Riverside Avenue Site Page 1 of 1

Oznania Nivasia an i	Dooor	D0000							
Sample Number :	B0005	B0006							
Sampling Location :	B12-PM-01	B12-PM-02							
Field QC	NAT 1 -	W							
Matrix :	Waste	Waste							
Units:	ug/Kg	3 3	ug/Kg						
Laboratory	A4 Scientific	A4 Scientific							
Case #:	40200	40200							
SDG:	B0005	B0005							
Date Sampled :	6/8/2010	6/8/2010							
Time Sampled :	10:05	10:10							
Volatiles	TIC Result Flag			Flag					
	None detected	Benzene, 1-methyl-2-(1-meth	450						
		Unknown-01 (12.88)	290						
		Nonanal	350						
		Benzene, 1,2,3,4-tetramethyl- (01)	310						
		Benzene, 1,2,3,4-tetramethyl- (02)	680						
		Unknown-02 (12.88)	300	J					
		Unknown-03 (12.88)	420						
		Unknown-04 (12.88)	290	J					
		Benzene, 1,2,4,5-tetramethyl-	920	JN					
		Benzene, 1,3-dimethyl-5-(1 (02)	440	JN					
		Total Alkane TICs	9800	J					

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B12 = Building 12

DS = Drum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

PM = Pigment material

PS = Pail sample

TAR = Tar sample

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TIC = Tentatively identified compound

Table 13 **Summary of Semivolatile Organic Compounds Detected in Pigment Samples** Riverside Avenue Site Page 1 of 1

Sample Number :		B0005	5	B0006		
Sampling Location :		B12-PM	-01	B12-PM	I-02	
Field QC						
Matrix :	Waste	Э	Wast	е		
Units:	ug/Kg	g	ug/K	g		
Laboratory	A4 Scien	tific	A4 Scientific			
Case #:		40200)	4020	0	
SDG:		B0005	5	B000	5	
Date Sampled :		6/8/201	10	6/8/20	10	
Time Sampled :		10:05	j	10:10)	
Semivolatile Compound	QL	Result	Flag	Result	Flag	
Di-n-butylphthalate	5			1300	J	
Bis(2-ethylhexyl)phthalate	5	34000	J		UJ	

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PM = Pigment material

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

UJ = Not detected above the reporting detection limit. Reporting detection limit is estimated.

Table 14 Summary of Pesticides Detected in Pigment Samples Building 12 Riverside Avenue Site Page 1 of 1

Sample Number :		B0005	,	B0006	6	
Sampling Location :		B12-PM-	01	B12-PM	-02	
Field QC						
Matrix :		Waste		Waste		
Units:		ug/Kg		ug/Kg		
Laboratory		A4 Scien	tific	A4 Scientific		
Case #:	40200		40200)		
SDG:	B0005	;	B0005	5		
Date Sampled :	6/8/201	0	6/8/201	10		
Time Sampled :	10:05		10:10			
Pesticide	QL	Result	Flag	Result	Flag	
alpha-BHC	1.7		UJ		UJ	
beta-BHC	1.7		UJ		UJ	
delta-BHC	1.7		UJ		UJ	
gamma-BHC (Lindane)	1.7		UJ		UJ	
Heptachlor	1.7		UJ		UJ	
Aldrin	1.7		UJ		UJ	
Heptachlor epoxide	1.7		UJ		UJ	
Endosulfan I	1.7		UJ		UJ	
Dieldrin	3.3		UJ		UJ	
4,4'-DDE	3.3		UJ		UJ	
Endrin	3.3		R		R	
Endosulfan II	3.3		UJ		UJ	
4,4'-DDD	3.3		UJ		UJ	
Endosulfan sulfate	3.3		R		R	
4,4'-DDT	3.3		UJ		UJ	
Methoxychlor	17		UJ		UJ	
Endrin ketone	3.3		UJ		UJ	
Endrin aldehyde	3.3		UJ		UJ	
alpha-Chlordane	1.7		UJ		UJ	
gamma-Chlordane	1.7		UJ		UJ	
Toxaphene	170		UJ		UJ	

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PM = Pigment material

QC = Quality Control

QL = Quantitation limit

R = Unsuable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

SDG = Sample Delivery Group

UJ = Not detected above the reporting detection limit. Reporting detection limit is estimated.

Table 15 **Summary of Aroclor Compounds** Detected in Pigment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B0008		B00		
Sampling Location :		B12-PM	-01	B12-PM-02		
Field QC						
Matrix :		Waste)	Waste		
Units:		ug/Ko	,	ug/	•	
Laboratory		A4 Scien	itific	A4 Sci	entific	
Case #:		40200	402	:00		
SDG:		B0005	B0005			
Date Sampled :	6/8/201	10	6/8/2010			
Time Sampled :		10:05	;	10:	10	
Aroclor Compound	QL	Result	Flag	Result	Flag	
Aroclor-1016	33		U		U	
Aroclor-1221	33		U		U	
Aroclor-1232	33		U		U	
Aroclor-1242	33		U		U	
Aroclor-1248	33		U		U	
Aroclor-1254	33		U		U	
Aroclor-1260	33		U		U	
Aroclor-1262	33		U		U	
Aroclor-1268	33		U		U	

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram Flag = Data qualifier PM = Pigment material

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

U = Not detected above the reporting detection limit.

Table 16 Summary of Inorganic Compounds Detected in Pigment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		MB0005	5	MB000	16		
Sampling Location :		B12-PM-0		B12-PM			
Field QC:		DIZ I WI	01	DIZIW	02		
Matrix:		Waste		Waste			
Units:		mg/kg		mg/kg			
Laboratory		Bonner		Bonne			
Case #:		40200		40200			
SDG:		40200 MB0008	,	MB000			
Date Sampled :		6/8/2010		6/8/201			
Time Sampled :		1005	J	1010	-		
•		1005		1010			
ANALYTE	QL	Result	Flag	Result	Flag		
ALUMINUM	20	444		670			
ANTIMONY	6	1.8	J	0.57	J		
ARSENIC	1	7.2		2.9			
BARIUM	20	86.1		40.6			
BERYLLIUM	0.5						
CADMIUM	0.5	3.7		0.98			
CALCIUM	500	33400	J	5400	J		
CHROMIUM	1	345	J	19.9	J		
COBALT	5	11.7		2.1	J		
COPPER	2.5	446		9310			
IRON	10	102000	J	16000	J		
LEAD	1	143	J	30.6	J		
MAGNESIUM	500	2580		3680			
MANGANESE	1.5	416	J	134			
MERCURY	0.1	1.7	J	8.9	J		
NICKEL	4	152		38.6			
POTASSIUM	500	633		9130			
SELENIUM	3.5			2.8	J		
SILVER	1	7.4		1.7			
SODIUM	500	2760	J	3040	J		
THALLIUM	2.5						
VANADIUM	5	3.9	J	2	J		
ZINC	6	530	J	188	J		
CYANIDE	2.5	3.6	J				

Notes:

mg/Kg = Milligrams per kilogram

Empty cell indicates parameter not detected above the reported detection limit.

Shaded cell indicates analysis not completed.

ug/Kg = micrograms per kilogram

DS = Drum sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

PM = Pigment material

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Table 17 Summary of Volatile Organic Compounds Detected in Basement Water Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B0003	3	B0004	4	B0010)	B0012	2	B003	1	B0033	3
Sampling Location :		B7-BW-	01	B12-AQ	-01	B7-BW-	02	B7-BW-	03	RAS-FB	3-01	RAS-TB-	-01
Field QC		Dup B7-B	W-03					Dup B7-B\	V-01				
Matrix:		Basement	Water	Basement	Water	Basement \	Water	Basement \	Nater	Field Bla	ank	Trip Bla	nk
Units:		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Laboratory		A4 Scien	tific	A4 Scier	ntific	A4 Scien	itific	A4 Scien	tific	A4 Scier	ntific	A4 Scien	tific
Case #:		40200)	40200)	40200)	40200)	4020	0	40200)
SDG:		B0003	3	B0003	3	B0003	3	B0003	3	B000	3	B0003	3
Date Sampled :		6/8/201	0	6/8/201	10	6/8/201	10	6/8/201	0	6/9/20	10	6/9/201	0
Time Sampled :		11:15	i	9:30		12:15	i	11:20		8:12		8:07	
Volatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1-Dichloroethene	5	6.7	J					5.3	J				
Acetone	10	350		8.7	J			290		7.4	J	6.7	J
Methyl acetate	5	13						12	J				
Methylene chloride	5	240		13		1.5	J	210	J	4.5	J	4	J
1,1-Dichloroethane	5	150						140	J				
2-Butanone	10	370						310		2.4	J		
Chloroform	5	10											
1,1,1-Trichloroethane	5	190		5.5				190	J				
Carbon tetrachloride	5	33	J										
Benzene	5	24						24					
Trichloroethene	5	19						19					
cis-1,3-Dichloropropene	5									2.4	J		
4-Methyl-2-pentanone	10	55						48					
Toluene	5	430		1.6	J			420		1.7	J	1.7	J
trans-1,3-Dichloropropene	5									1.5	J		
Tetrachloroethene	5	7.6	J					7.3	J				
Chlorobenzene	5	2.8	J					2.6	J				
Ethylbenzene	5	390						370					
o-Xylene	5	74						71					
m,p-Xylene	5	110		0.86	J			110					
Styrene	5	40						38					
Isopropylbenzene	5	15						13					
1,4-Dichlorobenzene	5	4.2	J	0.58	J			4.3	J				
1,2-Dichlorobenzene	5	23						22					
1,2,4-Trichlorobenzene	5	55		1.2	J			53					
1,2,3-Trichlorobenzene	5	14						13					

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/L = micrograms per liter

AQ = Aqueous sample

BW = Basement water

Dup = Duplicate sample

FB = Field Blank

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TB = Trip Blank

Table 18 Summary of Volatile Organic Compounds Tenatively Identified Compounds Detected in Basement Water Samples Riverside Avenue Site

Page 1 of 1

Sample Number :	B0003				B0012			B0033	
Sampling Location :	B7-BW-01				B7-BW-0		R	AS-TB-0	1
Field QC	Dup B7-BW-03			D	up B7-BW	/-01			
Matrix:	Basement Water				sement V		F	ield Blanl	k
Units:	ug/L				ug/L		ug/L		
Laboratory	A4 Scientific			A4 Scienti	ific	A	4 Scientif	ic	
Case #:	40200			40200			40200		
SDG:	B0003			B0003			B0003		
Date Sampled :	6/8/2010			6/8/2010)		6/9/2010		
Time Sampled :	11:15		11:20						
Volatiles	TIC	Result	Flag	TIC	Result	Flag	TIC	Result	Flag
	Diisopropyl Ether	790	JN	Diisop	730	JN	Cyclotet	5.3	JN
	Propane, 1-bromo-2-methyl-	130	JN	Propai	120	JN			
	Benzene, propyl-	55	JN	Benze	53	JN			
	Benzene, 1-ethyl-3-methyl-	250	JN	Benze	260	JN			
	Benzene, 1,2,3-trimethyl- (01)	150	JN	Benze	150	JN			
	Benzene, 1-ethyl-2-methyl-	100	JN	Benze	100	JN			
	Benzene, 1,2,3-trimethyl- (02)	260	JN	Benze	260	JN			
	Benzene, 1,2,3-trimethyl- (03)	85	JN	Benze	83	JN			
	Benzene, 1,3-diethyl-	25	JN	Benze	24	JN			
	Benzene, 1-ethyl-2,4-dimethyl-	62	JN	Benze	61	JN			
	Benzene, 1,2,4,5-tetramethyl- (0	36	JN	Benze	35	JN			
	Benzene, 1,2,4,5-tetramethyl- (02	50	JN	Benze	49	JN			
	Naphthalene, 1,2,3,4-tetrah	45	JN	Naphtl	44	JN			

Notes:

No TICs identified in B0004 (B12-AQ-01) or B0010 (B7-BW-01), or B0031 (RAS-FB-01).

ug/L = micrograms per liter

AQ = Aqueous sample

BW = Basement water

Dup = Duplicate sample

FB = Field Blank

Flag = Data qualifier

JN = Estimated concentration of tenatively identified compound.

QC = Quality Control

QL = Quantitation limit

RAS = Riverside assessment sampling

SDG = Sample Delivery Group

TB = Trip Blank

TIC = Tentatively identified compound

Table 19 Summary of Semivolatile Organic Compounds Detected in Basement Water Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B0003	3	B0004	1	B0010)	B0012		B	0031
Sampling Location :		B7-BW-	01	B12-AQ-	-01	B7-BW-(02	B7-BW-	03	RAS	-FB-01
Field QC		Dup B7-B	N-03					Dup B7-B\	V-01		
Matrix :		Basement	Water	Basement \	Water	Basement \	Vater	Basement \	Vater	Field	d Blank
Units:		ug/L		ug/L		ug/L		ug/L		u	g/L
Laboratory		A4 Scien	tific	A4 Scientific		A4 Scientific		A4 Scien	tific	A4 S	cientific
Case #:		40200)	40200		40200		40200	1	40)200
SDG:		B0003	B0003		B0003			B0003	3	В	0003
Date Sampled :		6/8/201	6/8/2010		0	6/8/201	0	6/8/201	0	6/9	/2010
Time Sampled :		11:15	11:15			12:15		11:20		8	:12
Semivolatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Phenol	5	500				13000			U	7.6	
2-Methylphenol	5	1100				13000		33	J	5.5	J
Acetophenone	5	61	J					17	J	2.8	J
4-Methylphenol	5	90	J			4700				1.5	J
Nitrobenzene	5	64	J								
Isophorone	5									1	J
2,4-Dimethylphenol	5	64	J			670	J	12	J		
Naphthalene	5								U	0.38	J
4-Chloroaniline	5	24	J					14	J		
Caprolactam	5							11	J		
4-Chloro-3-methylphenol	5									8.4	
1,1'-Biphenyl	5							3.5	J		
Diethylphthalate	5	41	J			250	J	35	J		
Di-n-butylphthalate	5			0.55						2.1	J
Bis(2-ethylhexyl)phthalate	5			2.1	J					6.4	

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/L = micrograms per liter

AQ = Aqueous sample

BW = Basement water

Dup = Duplicate sample

FB = Field Blank

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TB = Trip Blank

Table 20

Summary of Pesticides

Detected in Basement Water Samples

Riverside Avenue Site Page 1 of 1

Sampling Location : Field QC Matrix : Units : Laboratory Case #:		B7-BW Dup B7-E Basement ug/ A4 Scie	3W-03 t Water			B7-BW	/ -02	B7-BW Dup B7-E		RAS-FE	3-01
Matrix : Units : Laboratory Case #:		Basement ug/	t Water		Motor			Dun B7-F	2\// 01		
Units : Laboratory Case #:		ug/			Motor				10-446		Į.
Laboratory Case #:		J	L	Basement Water		Basement Water		Basement Water		Field Bl	ank
Case #:		A4 Scie		ug/L		ug/L		ug/L		ug/L	_ !
		40200		A4 Scientific		A4 Scie	ntific	A4 Scie	ntific	A4 Scier	ntific
000		4020	40200 40200		4020	0	4020	0	4020	0	
SDG:				B000)3	B000)3	B000	3	B000	3
Date Sampled :		6/8/20	010	6/8/20	10	6/8/20	10	6/8/20	10	6/9/20	10
Time Sampled :		11:15 9:30		12:1	5	11:2	0	8:12			
5	01	D 1:				D 1/		D 1	-	5 .	
Pesticide	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
alpha-BHC	0.05					310	JN				ļ
beta-BHC	0.05										ļ
delta-BHC	0.05										
gamma-BHC (Lindane)	0.05										ļ
Heptachlor	0.05										ļ
Aldrin	0.05										
Heptachlor epoxide	0.05										
Endosulfan I	0.05										
Dieldrin	0.1										
4,4'-DDE	0.1										
Endrin	0.1										ļ
Endosulfan II	0.1										ļ
4,4'-DDD	0.1										
Endosulfan sulfate	0.1										ļ
4,4'-DDT	0.1										
Methoxychlor	0.5										
Endrin ketone	0.1										
Endrin aldehyde	0.1										
alpha-Chlordane	0.05										
gamma-Chlordane	0.05					140	J				
Toxaphene	5										

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/L = Micrograms per liter

B7 = Building 7

B12 = Building 12

BW = Basement water

Dup = Duplicate sample

FB = Field Blank

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

QC = Quality Control

QL = Quantitation limit

RAS = Riverside assessment sampling

TB = Trip Blank

SDG = Sample Delivery Group

Table 21 Summary of Aroclor Compounds Detected in Basement Water Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B00	003	B00	04	B0010		B001:	2	B00	031
Sampling Location :		B7-B\	N-01	B12-A	Q-01	B7-BW-0	2	B7-BW-	-03	RAS-I	FB-01
Field QC		Dup B7-	-BW-03					Dup B7-B	W-01		
Matrix:		Basemer	nt Water	Basemen	t Water	Basement W	/ater	Basement	Water	Field	Blank
Units:		ug	/L	ug/	L	ug/L		ug/L		ug	ı/L
Laboratory		A4 Sci	entific	A4 Scie	entific	A4 Scienti	fic	A4 Scier	ntific	A4 Sc	ientific
Case #:		402	200	4020	00	40200		40200	0	402	200
SDG:		B00	003	B00	03	B0003		B000	3	B00	003
Date Sampled :		6/8/2	2010	6/8/20	010	6/8/2010)	6/8/20	10	6/9/2	2010
me Sampled :		11:15		9:3	0	12:15		11:20			12
Aroclor Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Aroclor-1016	33		U		U		U		U		U
Aroclor-1221	33		U		U		U		U		U
Aroclor-1232	33		U		U		U		U		U
Aroclor-1242	33		U		U		U		U		U
Aroclor-1248	33		U		U		U		U		U
Aroclor-1254	33		U		U		U		U		U
Aroclor-1260	33		U		U		U		U		U
Aroclor-1262	33		U		U		U		U		U
Aroclor-1268	33		U		U		U		U		U

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/L = micrograms per liter

B7 = Building 7

B12 = Building 12

BW = Basement water

Flag = Data qualifier

FB = Fiedl Blank

QC = Quality Control

QL = Quantitation limit

RAS = Riverside Avenue Site

SDG = Sample Delivery Group

U = Analyte not detected above reported detection limit.

Table 22 Summary of Volatile Organic Compounds Detected in Basement Sediment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B000	9	B00)13	B00	14	B0015	T
Sampling Location :		B12-SEI	D-01	B7-SE	D-02	B7-SE	D-03	B7-SED-()4
Field QC				Dup of B7	'-SED-03	Dup B7-S	SED-02		
Matrix:		Wast	е	Was	ste	Was	ste	Waste	
Units:		ug/K	g	ug/	'Kg	ug/l	K g	ug/Kg	
Laboratory		A4 Scier	ntific	A4 Sci	entific	A4 Scie	entific	A4 Scienti	fic
Case #:		4020	0	402	200	402	00	40200	
SDG:		B000	B0005		B0005		05	B0005	
Date Sampled :		6/8/20	10	6/8/2010		6/8/2010		6/8/2010)
Time Sampled :		9:45		11:	45	11:5		12:30	
Volatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1,2-Trichloro-1,2,2-trifluoroethane	250			150	J	3700		27000	
Acetone	500			250	J	220	J	11000	J
Methyl acetate	250							12000	J
Methylene chloride	250	11000	J	540		560		220000	
2-Butanone	500					230	J	120000	
Chloroform	250							110000	
1,1,1-Trichloroethane	250					230	J	1100000	
Benzene	250					430			
Trichloroethene	250					60	J	5200	J
Methylcyclohexane	250					120	J	2900	J
4-Methyl-2-pentanone	500							24000	J
Toluene	250			3100		8300		230000	
Tetrachloroethene	250			110	J	2100		280000	
2-Hexanone	500					2200			
Chlorobenzene	250			100	J	300		2200	J
Ethylbenzene	250			3900		12000		58000	
1,1,2-Trichloroethane	250					350			
o-Xylene	250			1600		6100		91000	
m,p-Xylene	250	5800	J	2000		7500		240000	
Styrene	250			860		2800		230000	
Bromoform	250	15000							
Isopropylbenzene	250			900		3800			
1,1,2,2-Tetrachloroethane	250			380		2300			
1,3-Dichlorobenzene	250			150	J	560		5000	J
1,4-Dichlorobenzene	250			620		2600		5600	J
1,2-Dichlorobenzene	250			310		1300		59000	
1,3-Dichlorobenzene	250	4400	J						
1,2,4-Trichlorobenzene	250	2600000		820		4100		290000	
1,2,3-Trichlorobenzene	250	1300000		260		1400		58000	

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

B12 = Building 12

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

SED = Sediment

Table 23 **Summary of Volatile Organic Compounds Tenatively Identified Compounds Detected in Basement Sediment Samples** RIverside Avenue Site Page 1 of 1

Sample Number : Sampling Location :	D40 0ED 04		B0013		B0014		B0015		
	B12-SED-01		B7-SED-02		B7-SED-03		B7-SED-04		
Field QC			Dup of B7-SED-03		Dup B7-SED-02				
Matrix:	Waste		Waste		Waste		Waste		
Units:	ug/Kg		ug/Kg		ug/Kg		ug/Kg		
Laboratory	A4 Scientific		A4 Scientific		A4 Scientific		A4 Scientific		
Case #:	40200		40200		40200		40200		
SDG:	B0005		B0005		B0005		B0005		
Date Sampled :	6/8/2010		6/8/2010		6/8/2010		6/8/2010		
Time Sampled :	9:45		11:45		11:50		12:30		
Volatiles	TIC	Result Flag	TIC	Result Flag	TIC	Result Flag	TIC	Result	Flag
F	Benzene, 1,2,4-trichloro-	16000 JN	Benzene, propyl-	2700 JN	cis-1-Ethyl-3-methyl-cycloh	6500 JN	Unknown-01 (5.43)	140000	J
			Benzene, 1-ethyl-3-methyl-	10000 JN	Unknown-01 (9.33)	3000 J	Diisopropyl Ether	110000	JN
			Benzene, 1,3,5-trimethyl-	6600 JN	Benzene, propyl-	6000 JN	Propane, 1-bromo-2-methyl-	490000	JN
			Benzene, 1-ethyl-2-methyl-	3600 JN	Benzene, 1-ethyl-3-methyl-	21000 JN	Benzene, methoxy-	120000	JN
			Benzene, 1,2,3-trimethyl- (01)	11000 JN	Benzene, 1,2,3-trimethyl- (01)	15000 JN	Benzene, 1-chloro-2-methyl-	67000	JN
			Benzene, 1,2,3-trimethyl- (02)	3300 JN	Benzene, 1-ethyl-2-methyl-	8300 JN	Benzene, 1-ethyl-3-methyl-	33000	JN
			Benzene, 1,3-diethyl-	940 JN	Benzene, 1,3,5-trimethyl-	22000 JN	Benzene, 1,3,5-trimethyl- (01)	35000	JN
			Benzene, 2-ethyl-1,3-dimethyl-	990 JN	Benzene, 1,2,3-trimethyl- (02)	7500 JN	Benzene, 1,3,5-trimethyl- (02)	66000	JN
			Benzene, 1-methyl-2-(1-meth	2900 JN	Benzene, 2-ethyl-1,4-dimethyl-	1900 JN	Unknown-02 (12.88)	58000	J
			Benzene, 1,2,4,5-tetramethyl- (01)	1500 JN	Benzene, 1-ethyl-2,4-dimethyl-	2400 JN	Unknown-03 (12.88)	22000	
			Benzene, 1,2,4,5-tetramethyl- (02)	1800 JN	Benzene, 1-methyl-2-(1-meth	7000 JN	Unknown-04 (12.88)	25000	
			Naphthalene, 1,2,3,4-tetrah (01)	1200 JN	Unknown-02 (12.88)	2300 J	Unknown-05 (12.88)	21000	J
			Naphthalene, 1,2,3,4-tetrah (02)	1000 JN	Benzene, 1,2,4,5-tetramethyl-	3400 JN	Naphthalene, 1,2,3,4-tetrah	300000	
			Naphthalene, 1-methyl-	1500 JN	Unknown-03 (12.88)	4300 J	Unknown-06 (12.88)	19000	J
			Total Alkane TICs	16000 J	Naphthalene, 1,2,3,4-tetrah (01)	3100 JN	Naphthalene, 1-chloro- (01)	19000	JN
					Naphthalene, 1,2,3,4-tetrah (02)	2400 JN	Naphthalene, 1-chloro- (02)	180000	JN
					Naphthalene, 1-methyl-	4000 JN			
					Total Alkane TICs	47000 J			

ug/Kg = micrograms per kilogram B7 = Building 7 B12 = Building 12

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

SED = Sediment

TIC = Tentatively identified compound

Table 24 Summary of Semivolatile Organic Compounds Detected in Basement Sediment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B00	009	B00)13	B00	14	B0015	
Sampling Location :		B12-S	ED-01	B7-SE	D-02	B7-SE	D-03	B7-SED-0)4
Field QC				Dup of B7	'-SED-03	Dup B7-S	SED-02		
Matrix :		Wa	ste	Was	ste	Waste		Waste	
Units:		ug/Kg		ug/Kg		ug/l	〈 g	ug/Kg	
aboratory		A4 Scientific		A4 Sci	entific	A4 Scie	entific	A4 Scienti	fic
Case #:		40200		402	200	4020	00	40200	
DG:		B0005		B00	005	B00	05	B0005	
ate Sampled :		6/8/2010		6/8/2010		6/8/20	010	6/8/2010)
Fime Sampled :		9:45		11:	11:45		50	12:30	
Semivolatile Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Phenol	5							2200000	
2-Methylphenol	5	7100	J	8900	J			4700000	
Acetophenone	5							430000	J
4-Methylphenol	5							1400000	
2,4-Dimethylphenol	5							430000	J
4-Chloroaniline	5			46000	J	70000	J		
2-Methylnaphthalene	5			4000	J	4200	J		
1,1'-Biphenyl	5							56000	J
2-Chloronaphthalene	5							110000	J
Diethylphthalate	5							240000	J
Fluoranthene	5					4400	J		
Bis(2-ethylhexyl)phthalate	5							230000	J

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

B12 = Building 12

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Sed = Sediment Sample

Table 25 Summary of Pesticides Detected in Basement Sediment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B00)13	B00	14	B0015		B000	9
Sampling Location :		B7-SE	D-02	B7-SE	D-03	B7-SED-0)4	B12-SE	D-01
Field QC		Dup of B7	'-SED-03	Dup B7-9	SED-02				
Matrix:		Was	ste	Was	ste	Waste		Waste	е
Units:		ug/	'Kg	ug/l	Kg	ug/Kg		ug/K	g
Laboratory		A4 Sci	entific	A4 Scie		A4 Scienti	fic	A4 Scier	ntific
Case #:		402	200	402	00	40200		4020	0
SDG:		B00	005	B00	05	B0005		B000	5
Date Sampled :		6/8/2	2010	6/8/2	010	6/8/2010)	6/8/20	10
Time Sampled :		11:	-	11:5		12:30		9:45	
Pesticide	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag
alpha-BHC	1.7		UJ		UJ		UJ		UJ
beta-BHC	1.7		UJ		UJ		UJ		UJ
delta-BHC	1.7		UJ		UJ		UJ		UJ
gamma-BHC (Lindane)	1.7		UJ		UJ		UJ		UJ
Heptachlor	1.7		UJ		UJ		UJ		UJ
Aldrin	1.7		UJ		UJ		UJ		UJ
Heptachlor epoxide	1.7		UJ		UJ		UJ		UJ
Endosulfan I	1.7		UJ		UJ		UJ		UJ
Dieldrin	3.3		UJ		UJ		UJ		UJ
4,4'-DDE	3.3		UJ		UJ		UJ		UJ
Endrin	3.3		R		R		R		R
Endosulfan II	3.3		UJ		UJ		UJ		UJ
4,4'-DDD	3.3		UJ		UJ		UJ		UJ
Endosulfan sulfate	3.3		R		R		R		R
4,4'-DDT	3.3		UJ		UJ		UJ		UJ
Methoxychlor	17		UJ		UJ		UJ		UJ
Endrin ketone	3.3		UJ		UJ		UJ		UJ
Endrin aldehyde	3.3		UJ		UJ		UJ		UJ
alpha-Chlordane	1.7		UJ		UJ		UJ		UJ
gamma-Chlordane	1.7		UJ		UJ		UJ		UJ
Toxaphene	170		UJ		UJ		UJ		UJ

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

B12 = Building 12

Flag = Data qualifier

QC = Quality Control

QL = Quantitation limit

R = Unsuable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

SDG = Sample Delivery Group

Sed = Sediment Sample

U = Not detected above the reporting detection limit.

UJ = Not detected above the reported detection limit. Detection limit is approximate.

Table 26 Summary of Aroclor Compounds Detected in Basement Sediment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		B00)13	B00	14	B0015		B000	9
Sampling Location :		B7-SED-02		B7-SED-03		B7-SED-04		B12-SE	D-01
Field QC		Dup B7-	SED-03	Dup B7-S	SED-02				
Matrix :		Wa	ste	Was	te	Waste		Waste	е
Units:		ug/	/Kg	ug/l	K g	ug/Kg		ug/K	g
Laboratory		A4 Sci	entific	A4 Scie	entific	A4 Scienti	fic	A4 Scier	ntific
Case #:		402	200	402	00	40200		4020	0
SDG:		B00	005	B00	05	B0005		B000	5
Date Sampled :		6/8/2	2010	6/8/2	010	6/8/2010)	6/8/20	10
Time Sampled :		11:	45	11:5	50	12:30		9:45	
Aroclor Compound	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag
Aroclor-1016	33		U		U		U		R
Aroclor-1221	33		U		U		U		R
Aroclor-1232	33		U		U		U		R
Aroclor-1242	33		U		U		U		R
Aroclor-1248	33		U		U		U		R
Aroclor-1254	33		U		U		U		R
Aroclor-1260	33		U		U		U		R
Aroclor-1262	33		U		U		U		R
Aroclor-1268	33		U		U		U		R

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

B12 = Building 12

Flag = Data qualifier

QC = Quality Control

QL = Quantitation limit

R = Unsuable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

SDG = Sample Delivery Group

Sed = Sediment Sample

U = Not detected above the reporting detection limit.

Table 27 Summary of Inorganic Compounds Detected in Basement Sediment Samples Riverside Avenue Site Page 1 of 1

Sample Number :		MDOOO	^	MD004	2	MDOOA	4	MD004	-
		MB0009 B12-SED	-	MB001		MB001		MB001 B7-SED-	
Sampling Location : Field QC :		D12-9ED	-01	B7-SED-02		B7-SED-03		B7-3ED-04	
		Sedime	-4	Sedime		C = 41:	4	Sediment	
Matrix :						Sedime			
Units:		mg/kg		mg/kg		mg/kg	<i>'</i>	mg/kg	
Laboratory		Bonne		Bonne		Bonne		Bonne	
Case #:		40200		40200		40200		40200	
SDG:		MB000	-	MB000	-	MB000		MB007	
Date Sampled :		6/8/201	U	6/8/201	0	6/8/201	-	6/8/201	0
Time Sampled :		945		1145		1150		1230	
ANALYTE	QL	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	20			4330				364	
ANTIMONY	6								
ARSENIC	1			4.3				0.24	J
BARIUM	20			95.5				34.2	
BERYLLIUM	0.5							0.02	J
CADMIUM	0.5			1.4				0.37	
CALCIUM	500	8.6	J	5000		8.1	J	1400	
CHROMIUM	1	0.08	J	22.2		0.092	J	3.8	
COBALT	5			8.1				1.3	J
COPPER	2.5			53				58.5	
IRON	10	3.9	J	31700	J	7.3	J	7320	
LEAD	1			171	J			26.5	
MAGNESIUM	500			3260				445	
MANGANESE	1.5			156				60.4	
MERCURY	0.1	120	J	0.34	J	0.42	J	0.18	
NICKEL	4			20.9				4.6	
POTASSIUM	500			285	J				
SELENIUM	3.5			2.5	J				
SILVER	1			3.2					
SODIUM	500	5.5	J	296	J	5.4	J		
THALLIUM	2.5								
VANADIUM	5			18				2.6	
ZINC	6			157	J			308	
CYANIDE	2.5	4.7	J						

Notes:

mg/Kg = Milligrams per kilogram

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Sed = Sediment samples

Table 28 Summary of Volatile Organic Compound Analytical Results Tar Material Sample Riverside Avenue Sites Page 1 of 1

Sample Number :	B0016				
Sampling Location :		B7-TAR-01			
Field QC					
Matrix :		Wast	е		
Units:		ug/K	g		
Laboratory		A4 Scier	ntific		
Case #:		4020	0		
SDG:		B000	5		
Date Sampled :		6/8/20	10		
Time Sampled :		14:45	5		
Volatile Compound	QL	Result	Flag		
Acetone	500	1600			
Methyl acetate	250	170	J		
Methylene chloride	250	300			
2-Butanone	500	260	J		
Cyclohexane	250	63	J		
Methylcyclohexane	250	700			
Toluene	250	130	J		
Ethylbenzene	250	460			
o-Xylene	250	2700			
m,p-Xylene	250	2900			
Isopropylbenzene	250	1000			

Notes

Empty cell indicates parameter not detected above the reported sample quantitation limit.

ug/kg = Micrograms per kilogram

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Table 29 Summary of Volatile Organic Compound Tenatively Identified Compounds Tar Sample Riverside Avenue Site Page 1 of 1

Sample Number :	B0016		
Sampling Location :	B7-TAR-01		
Field QC			
Matrix:	Waste		
Units:	ug/Kg		
Laboratory	A4 Scientific		
Case #:	40200		
SDG:	B0005		
Date Sampled :	6/8/2010		
Time Sampled :	14:45		
Volatiles	TIC	Result	Flag
	Bicyclo[3.2.1]octane	2200	JN
	Benzene, 1-ethyl-2-methyl- (01)	5400	JN
	Benzene, 1,2,3-trimethyl- (01)	10000	JN
	Benzene, 1-ethyl-2-methyl- (02)	3900	JN
	Benzene, 1,2,3-trimethyl- (02)	16000	JN
	Unknown-01 (12.88)	1800	J
	Benzene, 1,2,3-trimethyl- (03)	9800	JN
	Benzene, 1-ethyl-3,5-dimethyl-	12000	JN
	Benzene, 2-ethyl-1,4-dimethyl- (01)	5000	JN
	Benzene, 1-methyl-2-(1-meth	5700	JN
	Benzene, 4-ethyl-1,2-dimethyl-	11000	JN
	Indan, 1-methyl-	2300	JN
	Unknown-02 (12.88)	7600	J
	Unknown-03 (12.88)	2700	J
	Benzene, 2-ethyl-1,4-dimethyl- (02)	4100	JN
	Benzene, 1,2,4,5-tetramethyl- (01)	6600	JN
	Benzene, 1,2,4,5-tetramethyl- (02)	10000	JN
	Unknown-04 (12.88)	3300	J
	Benzene, 1,2,4,5-tetramethyl- (03)	10000	JN
	Benzene, 1-methyl-4-(1-meth (03)	1800	JN
	Naphthalene, 1,2,3,4-tetrah	3000	JN
	Unknown-05 (12.88)	3400	
	Total Alkane TICs	49000	J

Notes:

ug/Kg = micrograms per kilogram

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

JN = Estimated concentration of tenatively identified compound.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TAR = Tar sample

TIC = Tentatively identified compound

Table 30 Summary of Semivolatile Organic Compounds Detected in Tar Samples Riverside Avenue Site Page 1 of 1

Sample Number : Sampling Location :	B0016 B7-TAR-01		
Field QC Matrix: Units: Laboratory Case #: SDG: Date Sampled: Time Sampled:	Waste ug/Kg A4 Scien 40200 B0005 6/8/201 14:45	tific) 5	
Semivolatile Compound	QL	Result	Flag
Acetophenone Naphthalene 2-Methylnaphthalene 4,6-Dinitro-2-methylphenol	5 5 5 10	83000 79000 21000 11000	J J

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

B7 = Building 7

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TAR = Tar sample

Table 31 **Summary of Pesticides Detected in Tar Samples Riverside Avenue Site** Page 1 of 1

Sample Number :	B0016		
Sampling Location :	B7-TAR-01		
Field QC			
Matrix :		Waste)
Units:		ug/Kg	9
Laboratory		A4 Scien	tific
Case #:		40200)
SDG:		B0005	5
Date Sampled :		6/8/201	10
Time Sampled :		14:45	;
Pesticide	QL	Result	Flag
alpha-BHC	1.7		
beta-BHC	1.7		
delta-BHC	1.7		
gamma-BHC (Lindane)	1.7		
Heptachlor	1.7		
Aldrin	1.7		
Heptachlor epoxide	1.7		
Endosulfan I	1.7		
Dieldrin	3.3		
4,4'-DDE	3.3		
Endrin	3.3		
Endosulfan II	3.3		
4,4'-DDD	3.3		
Endosulfan sulfate	3.3		
4,4'-DDT	3.3		
Methoxychlor	17		
Endrin ketone	3.3		
Endrin aldehyde	3.3		
alpha-Chlordane	1.7		
gamma-Chlordane	1.7		
Toxaphene	170		

Notes:

Empty cell indicates parameter not detected above the reported detection limit. ug/Kg = micrograms per kilogram

B7 = Building 7

Dup = Duplicate sample

Flag = Data qualifier

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

TAR = Tar sample

Table 32 **Summary of Aroclor Compounds Detected in Tar and Riverbank Samples Riverside Avenue Site** Page 1 of 1

Sample Number :		B004	1	B00	116		
•			B0041		-		
Sampling Location :		Riverba	nk-1	B7-TA	IK-01		
Field QC							
Matrix:		Wast	е	Was	ste		
Units :		ug/K	g	ug/	Kg		
Laboratory		A4 Scier	ntific	A4 Sci	entific		
Case #:		4020	0	402	200		
SDG:		B000	8	B00	005		
Date Sampled :		6/9/2010		6/8/2010			
Time Sampled :		14:00		14:45			
·							
Aroclor compound	QL	Result	Flag	Result	Flag		
Aroclor-1016	33		UJ		U		
Aroclor-1221	33		UJ		U		
Aroclor-1232	33		UJ		U		
Aroclor-1242	33		UJ		U		
Aroclor-1248	33	UJ			U		
Aroclor-1254	33	UJ			U		
Aroclor-1260	33	UJ			U		
Aroclor-1262	33	UJ		UJ			U
Aroclor-1268	33		UJ		U		

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram
Flag = Data qualifier
QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

UJ = Not detected above the reporting detection limit. Reporting detection limit is estimated.

Table 33
Summary of Inorganic Compounds
Detected in Riverbank Sample
Riverside Avenue Site
Page 1 of 1

Sample Number: Sampling Location: Field QC: Matrix: Units: Laboratory Case #: SDG: Date Sampled: Time Sampled:	MB0041 Riverbank-1 Sediment mg/kg Bonner 40200 MB0008 6/9/2010 1400			
ANALYTE	QL	Result	Flag	
ALUMINUM	20	527	wg	
ANTIMONY	6			
ARSENIC	1	5		
BARIUM	20	142		
BERYLLIUM	0.5	0.04	J	
CADMIUM	0.5	0.38	J	
CALCIUM	500	796		
CHROMIUM	1	2.5	J	
COBALT	5	2.7	J	
COPPER	2.5	66.4		
IRON	10	1440	-	
LEAD	1	357	-	
MAGNESIUM	500	84.9	-	
MANGANESE	1.5	102		
MERCURY	0.1	0.062	-	
NICKEL	4	2.7	-	
POTASSIUM	500	49.2	-	
SELENIUM	3.5	0.89	J	
SILVER	1	00.1	١.	
SODIUM	500	60.1	J	
THALLIUM VANADIUM	2.5	4.0		
ZINC	5	1.6 179	-	
CYANIDE	6 2.5	179	J	

Notes:

mg/Kg = Milligrams per kilogram

Empty cell indicates parameter not detected above the reported detection limit.

ug/Kg = micrograms per kilogram

Dup = Duplicate sample

Flag = Data qualifier

J = The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.

QC = Quality Control

QL = Quantitation limit

SDG = Sample Delivery Group

Table 34 Summary of TCLP Results Riverbank Sample Riverside Avenue Site Page 1 of 2

Sample Number :			B0041/	MB0041	
Sampling Location :				Riverbank-1	
Field QC					
Matrix :	Wa	aste			
Units:			u	g/L	
Laboratory			A4 Sc	eientific	
Case #:			40	200	
SDG:			B0008/	MB0025	
Date Sampled :			6/9/	2010	
Time Sampled :			14	:00	
		TCLP			
Volatile compound	QL	Regulatory Limit	Result	Flag	
Vinyl chloride	5	200		R	
1,1-Dichloroethene	5	700		R	
2-Butanone	10	200000		R	
Chloroform	5	6000		R	
Carbon tetrachloride	5	500		R	
Benzene	5	500		R	
1,2-Dichloroethane	5	500		R	
Trichloroethene	5	500		R	
Tetrachloroethene	5	700		R	
Chlorobenzene	5	100000		R	
1,4-Dichlorobenzene	5	7500		R	
2-Methylphenol	5	200000		U	
3-Methylphenol + 4-Methylphenol	5	200000		U	
Total Cresol	5	200000		U	
Hexachloroethane	5	3000		U	
Nitrobenzene	5	2000		U	
Hexachlorobutadiene	5	500		U	
2,4,6-Trichlorophenol	5	2000		U	
2,4,5-Trichlorophenol	5	400000		U	
2,4-Dinitrotoluene	5	130		U	
Hexachlorobenzene	5	130		U	
Pentachlorophenol	10	100000		U	
Pyridine	5	5000		U	
gamma-BHC (Lindane)	0.05	400		UJ	
Heptachlor	0.05	8		UJ	
Heptachlor epoxide	0.05	8		UJ	
Endrin	0.1	20		UJ	
Methoxychlor	0.5	10000		UJ	
alpha-Chlordane	0.05	30		UJ	
gamma-Chlordane	0.05	30		UJ	
Toxaphene	5	500		UJ	
2,4-D	2.5	10000		UJ	
2,4,5-TP (Silvex)	0.5	1000		UJ	
Arsenic	10	5000		UJ	
Barium	200	100000		U	
Cadmium	5	1000		Ü	
Chromium	10	5000		Ü	
Lead	10	5000	5910		
Mercury	0.2	200	1.6		
Selenium	35	1000	1.0	UJ	
Silver	10	5000		UJ	
011701	10	3000		00	

Table 34 Summary of TCLP Results Riverbank Sample Riverside Avenue Site Page 2 of 2

Notes:

Empty cell indicates parameter not detected above the reported detection limit.

Sample number for organic analysis starts with "B", sample number for inorganic analysis (shown in paraenthesis) starts with "MB"

ug/L = micrograms per liter

Flag = Data qualifier

QC = Quality Control

QL = Quantitation limit

R = Unsuable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

SDG = Sample Delivery Group

U = Not detected above the reporting detection limit.

UJ = Not detected above the reporting detection limit. Reporting detection limit is estimated.

ATTACHMENT 1 IGNITABILITY/CORROSIVITY TEST RESULTS

http://www.emsl.com

3 Cooper St. Westmont, NJ 08108 Phone: (856) 858-4800 Fax: (856) 858-4571

Attn:

K. Scott

Tetra Tech EMI 7 Creek Parkway Suite 700 Boothwyn, PA 19061

6/29/2010

Phone: (610) 485-6410

Fax: (610) 485-8587

> The following analytical report covers the analysis performed on samples submitted to EMSL Analytical, Inc. on 6/15/2010. The results are tabulated on the attached data pages for the following client designated project:

The reference number for these samples is EMSL Order #011002680. Please use this reference when calling about these samples. If you have any questions, please do not hesitate to contact me at (856) 858-4800.

Reviewed and Approved By:

Julie Smith - Laboratory Director or other approved signatory

The test results contained within this report meet the requirements of NELAC and/or the specific certification program that is applicable, unless otherwise noted. NJ-NELAP Accredited: 04653

The samples associated with this report were received in good condition unless otherwise noted. This report relates only to those items tested as received by the laboratory. The QC data associated with the sample results meet the recovery and precision requirements established by the NELAP, unless specifically indicated. All results for soil samples are reported on a dry weight basis, unless otherwise noted. This report may not be reproduced except in full and without written approval by EMSL Analytical, Inc.

3 Cooper St., Westmont, NJ 08108

Attn: K. Scott

Tetra Tech EMI
7 Creek Parkway
Suite 700

Boothwyn, PA 19061

Fax: (610) 485-8587

Phone (610) 485-6410

Customer ID:

TTEC50

Customer PO:

Received:

06/15/10 12:30 PM

EMSL Order:

011002680

Anal	ytical	Res	ults
------	--------	-----	------

Client Sample Description	B12-DS-01	Collected:	6/8/2010 9:15:00 AM	Lab ID: 0001	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
1010 Modified	Ignitability	>180	N/A °F	6/24/2010	bwright
9045C	geren en ewe he v ragatier. •	8.88	N/A	6/23/2010	bwright
Client Sample Description	B12-D\$-02	Collected:	6/8/2010 9:15:00 AM	Lab ID: 0002	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
010 Modified	Ignitability	>180	N/A °F	6/24/2010	bwright
9045C	pH	4.58	N/A	6/23/2010	bwright
Client Sample Description	B12-PM-01	Collected:	6/8/2010 10:05:00 AM	Lab ID: 0003	
A ST . I	D. normation	Concentration	Reporting Limit Units	Analysis Date	Analyst
Method	Parameter	Concentration ≥180	N/A °F	6/24/2010	bwright
010 Modified 9045C	lgnitability pH	n/a	N/A	6/23/2010	bwright
Unable to analyze due to sample matri	•	.,,		0/20/2010	
Client Sample Description	B12-PM-02	Collected:	6/8/2010 10:10:00 AM	Lab ID: 0004	
	_		Reporting	Annature Dog	4
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010 Modified	Ignitability	>180 n/a	N/A °F N/A	6/24/2010	bwright bwright
9045C Unable to analyze due to sample matrix	pH x.	Iva	IV/A	6/23/2010	DWIIgiit
Client Sample Description	B12-PS-01	Collected:	6/8/2010 9:20:00 AM	Lab ID: 0005	in #"
Masha d	Bananatan	Concentration	Reporting Limit Units	Analysis Date	Analyst
Method 1010	Parameter	Concentration >180	Viiis	6/24/2010	bwright
9040B	lgnitability pH	4.00	N/A ph Unit		bwright
Client Sample Description	B7-CS-02	Collected:	6/9/2010 11:27:00 AM	Lab ID: 0006	
			Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010	Ignitability	130	N/A °F	6/24/2010	bwright
ChemSmnlw/PDI/NELAC-7.2	21.0 Printed: 6/29/2010 5:00:28 PM			1	Page 2 of 6

3 Cooper St., Westmont, NJ 08108

Phone: (856) 858-4800 Fax: (856) 858-4571 Email: jsmith@emsl.com

Attn: K. Scott
Tetra Tech EMI
7 Creek Parkway
Suite 700
Boothwyn, PA 19061

Fax: (610) 485-8587

Phone (610) 485-6410

Customer ID:

TTEC50

Customer PO:

Received:

06/15/10 12:30 PM

EMSL Order:

011002680

Analytical Results

Client Sample Description	B7-CS-02	Collected:	6/9/2010 11:27:00 AM	Lab ID: 0006	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
9040B Unable to analyze due to sample matri	pH xc	n/a	N/A ph Units	6/23/2010	bwright
Client Sample Description	B7-CS-03	Collected:	6/9/2010 9:56:00 AM	Lab ID: 0007	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
1010 Modified	Printer of the Printer of the Control of the Contro	>180	N/A °F	6/24/2010	bwright
9045C	/ Ignitability pH	9.71	N/A	6/23/2010	bwright
Client Sample Description	B7-DS-01	Collected:	6/9/2010 9:40:00 AM	Lab ID: 0008	
	_		Reporting Limit Units	Australa Data	A su milional
Method	Parameter	Concentration	an an area area area area area	Analysis Date	Analyst
1010 Modified	Ignitability	>180	N/A °F	6/24/2010	bwright
9045C	рН	3.38	N/A	6/23/2010	bwright
Client Sample Description	B7-P-01	Collected:	6/8/2010 3:15:00 PM	Lab ID: 0009	
And a	Degenerator	Concentration	Reporting Limit Units	Analysis Date	Analyst
Method	Parameter	Concentration 150	N/A °F	6/24/2010	bwright
1010 9040B	ignitability pH	4.34	N/A ph Units	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	bwright
Client Sample Description	B7-PS-01	Collected:	6/8/2010	Lab ID: 0010	
			11:04:00 AM		
			Reporting	4 4 5 5 7	
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010	Ignitability	>180	N/A °F	6/24/2010	bwright
9040B	рН	7.0	N/A ph Units	6/23/2010	bwright
Client Sample Description	B7-PS-02	Collected:	6/9/2010 10:33:00 AM	Lab ID: 0011	
Made a	Doggwater	Concentration	Reporting Limit Units	Analysis Date	Analyst
Method 646	Parameter	Concentration ≥180	N/A °F	6/24/2010	bwright
010	Flashpoint	7.59	N/A Ph Units	6/23/2010	bwright
SM 4500-H B Sample received outside of the regulato	pH ov hold time	7.55	WA PILOTIES	0/23/2010	Simigni
pampio recorred adiatae di trio regulato	is the same				D
hemSmplw/RDL/NELAC-7.2	1.0 Printed: 6/29/2010 5:00:28 PM				Page 3 of 6

3 Cooper St., Westmont, NJ 08108

Attn: K. Scott Tetra Tech EMI 7 Creek Parkway Suite 700

Boothwyn, PA 19061

Fax: (610) 485-8587

Phone (610) 485-6410

Customer ID:

TTEC50

Customer PO:

Received:

06/15/10 12:30 PM

EMSL Order:

011002680

Anal	ytica	l Res	ults
------	-------	-------	------

Client Sample Description	B7-PS-03	Collected:	6/9/2010 11:54:00 AM	Lab ID: 0012	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
010 Modified 9045C	lgnitability pH	/√√≥180 4.51	N/A °F N/A	6/24/2010 6/23/2010	bwright bwright
Client Sample Description	B7-SED-02	Collected:	6/8/2010 11:45:00 AM	Lab ID: 0013	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
1010	. Ignitability	>180	N/A∵°F	6/24/2010	bwright
9040B	pH	6.68	N/A ph Units	6/23/2010	bwright
Client Sample Description	B7-SED-03	Collected:	6/8/2010 11:50:00 AM	Lab ID: 0014	
 Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
1010	Ignitability	>180	N/A °F	6/28/2010	mmazur
9040B	pH	6.68	N/A ph Units	[2] [2] 经产品的基本的 计算量 [2] [2] [2] [2] [2] [2] [2] [2] [2] [2]	bwright
Client Sample Description	RAS-B7-TM-05	Collected:	6/8/2010 1:15:00 PM	Lab ID: 0015	
			Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010	Flashpoint	>180	N/A °F	6/28/2010	mmazur
SM 4500-H B Sample received outside of the regula	pH	5.15	N/A ph Units	6/23/2010	bwright
Client Sample Description	RAS-B7-TM-09	Collected:	6/8/2010 1:34:00 PM	Lab ID: 0016	
			Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010	Ignitability:	>180	™ NA °F	6/28/2010	mmazur
040B	рН	n/a	N/A ph Units	6/23/2010	bwright
Jnable to analyze due to sample matr					
Client Sample Description	RAS-B7-TM-09-2S	Collected:	6/8/2010 2:30:00 PM	Lab ID: 0017	
Method	Parameter	Concentration	Reporting Limit Units	Analysis Date	Analyst
1010		>180	N/A °F	6/28/2010	mmazur
UIV	Ignitability			0/20/2010	
ChemSmplw/RDL/NELAC-7.	21.0 Printed: 6/29/2010 5:00:28 PM			1	Page 4 of 6

3 Cooper St., Westmont, NJ 08108

Page 5 of 6

Attn: K. Scott
Tetra Tech EMI
7 Creek Parkway
Suite 700
Boothwyn, PA 19061

ChemSmplw/RDL/NELAC-7.21.0 Printed: 6/29/2010 5:00:28 PM

Fax: (610) 485-8587

Phone (610) 485-6410

Customer ID:

TTEC50

Customer PO:

Received:

06/15/10 12:30 PM

EMSL Order:

011002680

Analytical Results

Client Sample Description	RAS-B7-TM-09-2S	Collected:	6/8/2010 2:30:00 PM	Lab ID: 0017	
Method	Parameter	Eoncentration	Reporting Limit Units	Analysis Date	Analyst
9040B	pH ****	7.00	N/A ph Units		bwright
Client Sample Description	RAS-B7-TM-10	Collected:	6/8/2010 1:30:00 PM	Lab ID: 0018	
		K	Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
1010	lgnitability	>180	N/A °F	6/28/2010	mmazur
9040B	рН	7.00	N/A ph Units	6/23/2010	bwright
Client Sample Description	RAS-B7-TM-14A	Collected:	6/8/2010 9:50:00 AM	Lab ID: 0019	
			Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
[010	gnitability	>180	N/A °F	6/28/2010	mmazur
9040B	рН	7.00	N/A ph Units	6/23/2010	bwright
Client Sample Description	RAS-B7-TM-14B	Collected:	6/8/2010 10:05:00 AM	Lab ID: 0020	
		R	Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
I010	lgnitability:	>180	N/A °E	6/28/2010	mmazur
9040B	pH	7.00	N/A ph Units	6/23/2010	bwright
Client Sample Description	RAS-B7-TM-17	Collected:	6/8/2010 12:15:00 PM	Lab ID: 0021	
Method	Parameter	R Concentration	Reporting Limit Units	Analysis Date	Analyst
010	Ignitability	>180	NA °F	6/28/2010	mmazur
9040B	pH	7.00	N/A ph Units	6/23/2010	bwright
Client Sample Description	RAS-B7-TM-18	Collected:	6/8/2010 12:30:00 PM	Lab ID: 0022	
		R	Reporting		
Method	Parameter	Concentration	Limit Units	Analysis Date	Analyst
010	Flashpoint	>180	∍ N/A °F	6/28/2010	mmazur
UIU	THE PARTY OF THE P				
M 4500-H B	pH	6.03	N/A ph Units	6/23/2010	bwright

3 Cooper St., Westmont, NJ 08108

Attn: K. Scott
Tetra Tech EMI
7 Creek Parkway
Suite 700

Boothwyn, PA 19061

Customer ID:

TTEC50

Customer PO:

06/15/10 12:30 PM

Received: EMSL Order:

011002680

Fax: (610) 485-8587

Phone (610) 485-6410

Analytical Results

Client Sample Description	RAS-B7-TM-19	Collected: 6/8/2010 Lab ID: 0023 12:45:00 PM
Method	Parameter	Reporting Concentration Limit Units Analysis Date Analyst
1010	Flashpoint	>180 N/A °F 6/29/2010 bwright
SM 4500-H B	pH	5.86 N/A ph Units 6/23/2010 bwright
Sample received outside of the regul	atory hold time	
Client Sample Description	RAS-B7-TM-53A	Collected: 6/8/2010 Lab ID: 0024 11:00:00 AM
		Reporting
Method	Parameter	Concentration Limit Units Analysis Date Analyst
1010	Flashpoint	>180 N/A °F 6/29/2010 bwright
M 4500-H B	pH	7.90 N/A ph Units 6/23/2010 bwright
Sample received outside of the regula	atory hold time	
Client Sample Description	RAS-B7-TM-53B	Collected: 6/8/2010 Lab ID: 0025 11:15:00 AM
		Reporting
Method	Parameter	Concentration Limit Units Analysis Date Analyst
010	Flashpoint	>180 N/A °F 6/29/2010 bwright
SM 4500-H B	рН	8.14 N/A ph Units 6/23/2010 bwright
Sample received outside of the regula	atory hold time	

%EPA

FedEx

Shipped to: Airbill:

Date Shipped: Carrier Name:

Reference Case 40200 For Lab Use Only Lab Contract No: Lab Contract No: Transfer To: Client No: Unit Price: SDG No: dof: 81 4° WETICE 01/51/ (Date / Time) 01/100 2680 Received By Sampler Signature: 1500 (Date / Time) 6 | 7 | 18 **USEPA Contract Laboratory Program Chain of Custody Record Generic Chain of Custody** EMSL 3 Cooper Street Westmont NJ 08108 () -6/14/2010

	FOR LAB USE ONLY Sample Condition On Receipt										
Unit Price:	LECT	9:15	9:15	10:05	10:10	9:20	11:27	9:56	9:40	15:15	11:04
i	SAMPLE COLLECT DATE/TIME	S: 6/8/2010	S: 6/9/2010								
	STATION	B12-DS-01	B12-DS-02/	B12-PM-01	B12-PM-02	B12-PS-01	B7-CS-02	B7-CS-03	B7-DS-01	B7-P-01	B7-PS-01
	TAG No./ PRES ERVATIVE/ Bottles	()	€	⊕	€	€	€	•	-	⊕	©
t	ANALYSIS/ TURNAROUND	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)				
	CONC/	H/C	H/C	H/G	H/G	H/G	9/H	9/H	9/H	9/H	H/G
	MATRIX/ SAMPLER	Waste/ Kevin Scott	Waste/ Kevin Scott	Waste/ Kevin Scott	Waste/ Kevin Scott	Oil(High only)/ Kevin Scott	Waste/ Kevin Phelan	Waste/ Kevin Phelan	Waste/ Kevin Phelan	Waste/ Chris Burns	Waste/ Kevin Phelan
	SAMPLE No.) B12-DS-01	3) B12-DS-02	3) B12-PM-01	(4) B12-PM-02	g B12-PS-01	(b) B7-CS-02	(1) B7-CS-03	(δ) B7-DS-01	(d) B7-P-01	(b) B7-PS-01
	`				`		_ `		_	_	

Shipment for Case Complete 2/1/2	Sample(s) to be used for laboratory Q.C.	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? Shipment Iced?
CORR_Ph = Corrosivity	CORR_Ph = Corrosivity (pH), IGNIT = Ignitability			

TR Number:

TR Number: 2-232373826-061410-0001
PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phope 708/818-4200; Fax
703/818-4602

M. Kevir, Junk 1747

12:300 6/15/10 - E2

LABORATORY COPY
84200; Fax
Fzv51.047 Page 1 of 3

%EPA

Date Shipped: Carrier Name:

Shipped to: Airbill:

Reference Case 40200 Client No: For Lab Use Only Lab Contract No: Lab Contract No: Transfer To: Unit Price: SDG No: 011002680 (Date / Time) Received By Sampler Signatur (4 (0 1500 (Date / Time) USEPA Contract Laboratory Program Generic Chain of Custody Chain of Custody Record Relinquished By EMSL 3 Cooper Street Westmont NJ 08108 () -6/14/2010 FedEx

	FOR LAB USE ONLY Sample Condition On Receipt										
Unit Price:		10:33	11:54	11:45	11:50	13:15	13:34	14:30	13:30	9:50	10:05
	SAMPLE COLLECT DATE/TIME	S: 6/9/2010	S: 6/9/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010	S: 6/8/2010				
	STATION	B7-PS-02.	B7-PS-03 ×	B7-SED-02	B7-SED-03 /	RAS-B7-TM-05	RAS-B7-TM-09 /	RAS-B7-TM-09-2S./~' S: 6/8/2010	RAS-B7-TM-10 /	RAS-B7-TM-14A	RAS-B7-TM-14B
	TAGNOJ PRESERVATIVEJ Bottles	€	(1) 2	§	2	€	•	€	€	• 😜	-9
4	ANALYSIS/ TURNAROUND	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)	CORR_Ph (14), IGNIT (14)						
	CONC/ TYPE	H/G	H/G	H/G	H/G						
	MATRIX/ SAMPLER	Waste/ Kevin Phelan	Waste/ Kevin Phelan	Sediment/Sludge /			Waste/ Chris Burns	- Waste/ Chris Burns	Waste/ Chris Burns	Waste/ Chris Burns	Waste/ Chris Burns
	SAMPLE No.) B7-PS-02	(L) B7-PS-03	(3 B7-SED-02	(A) B7-SED-03	(5) RAS-B7-TM-05	RAS-B7-TM-09 Waste/	RAS-B7-TM-09- Waste/ 2S Chris B	RAS-B7-TM-10 Waste/ Chris Burns	(A) RAS-B7-TM-14 Waste/ A Chris Bi	RAS-B7-TM-14 Waste/ B Chris B
_	,	(E)	<u>س</u>	<u>ان</u>	رت ر	<u> </u>	(عِ)	$\mathcal{L}(\mathcal{L})$		<u>ال</u>	(3)

Shipment for Case	Sample(s) to be used for laboratory OC:	Additional Sampler Signatura(s).	F - 1 - 0	
Complete ? X		Sourcoins Campier Orginamie(s).	Cooker Temperature Upon Receipt:	Chain of Custody Seal Number:
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? Shipment Iced?
CORR_Ph = Corrosivity	CORR_Ph = Corrosivity (pH), IGNIT = Ignitability			

TR Number: 2-232373826-061410-0001
PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Healther Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

LABORATORY COPY
8-4200; Fax
Fzvst. 047 Page 2 of 3

USEPA Contract Laboratory Program	Generic Chain of Custody
VC∃	

Reference Case 40200 01100 2680

Client No: SDG No:

For Lab Use Only

Sampler Signature: Received By

500

87/21/3

(Date / Time)

Chain of Custody Record Relinquished By EMSL 3 Cooper Street Westmont NJ 08108 () -6/14/2010 FedEx Date Shipped: Carrier Name:

Shipped to: Airbill:

1					
	Lab Contract No:	Unit Price:	Transfer To:	Lab Contract No:	Unit Price:
	(Date / Time)				

Sample Condition On Receipt FOR LAB USE ONLY

MATRIX SAMPLER CONC/ TYPE ANALYSIS/ TURNAROUND TAGNOJ STATION SAMPLE DATE Waste/ Chris Burns H/G CORR_Ph (14), IGNIT (14) (*) RAS-B7-TM-17 / S: 6/8/2010 S: 6/8/2010 Waste/ Chris Burns H/G CORR_Ph (14), IGNIT (14) (*) (*) RAS-B7-TM-19 / S: 6/8/2010 Waste/ Chris Burns H/G CORR_Ph (14), IGNIT (14) (*) RAS-B7-TM-19 / S: 6/8/2010 Waste/ IGNIT (14) H/G CORR_Ph (14), IGNIT (14) (*) RAS-B7-TM-19 / S: 6/8/2010
LER TYPE LER TYPE Urns H/G Urns H/G Urns H/G Urns H/G
urns urns
MATRIX/ SAMPLER daste/ hris Burns hris Burns daste/ hris Burns aste/ hris Burns
SAMPLE No. SAMP RAS-B7-TM-17 Waste/ Chris B Chris B RAS-B7-TM-19 Waste/ Chris B Chris B RAS-B7-TM-19 Waste/ Chris B

Shipment for Case Complete ? X Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Cooler Temperature Upon Receipt:	Chain of Custody Seal Number:	ť
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G		Custody Seal Intact? Shipment Iced?	hipment Iced?
- 40 0000					
	CORR_PR = Corrosivity (pH), IGNII = Ignitability				

TR Number: 2-232373826-061410-0001

PR provides preliminary results. Requests for preliminary results will increase analytical costs.
Send Copy to: Sample Management Office, Attn: Heather Bauer, CSC, 15000 Conference Center Dr., Chantilly, VA 20151-3819; Phone 703/818-4200; Fax 703/818-4602

6/15/10 12:300 hed Er

LABORATORY COPY
8-4200; Fax
Fzv5.1.047 Page 3 of 3

ATTACHMENT 2 ASBESTOS ANALYTICAL RESULTS REPORT

200 Route 130 North, Cinnaminson, NJ 08077

Fax: (856) 786-5974 Email: westmontasblab@EMSL.com Phone: (856) 858-4800

Attn: Christopher Burns

Tetra Tech EMI

7 Creek Parkway

Suite 700

Customer ID:

TTEC50

Customer PO: Received:

06/16/10 9:00 AM

EMSL Order:

041012689

Boothwyn, PA 19061

Fax:

Project:

(610) 485-8587

Phone: (610) 485-6410

103DX9004L100178 NJ samples

EMSL Proj: Analysis Date:

7/6/2010

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

			Non-Asbe	<u>stos</u>	<u>Asbestos</u>
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Type
RSA-BK-001 041012689-0001	1ST FLR BLD 7 HORIZONTAL PIPE - 10" PIPEWRAP	White Fibrous Heterogeneous	HA: 1	30% Non-fibrous (other)	70% Chrysotile
RSA-BK-002 041012689-0002	1ST FLR BLD 7 HORIZONTAL PIPE - 6" PIPEWRAP	White Fibrous Heterogeneous		35% Non-fibrous (other)	65% Chrysotile
RSA-BK-003 041012689-0003	1ST FLR BLD 7 HORIZONTAL PIPE UNDER MACHINERY - 6" PIPEWRAP	Gray Fibrous Heterogeneous	HA: 2 80% Cellulose	5% Non-fibrous (other)	15% Chrysotile
RSA-BK-004 041012689-0004	2ND FLR BLD 7 HORIZONTAL PIPE NORTH - 6" PIPEWRAP	White Fibrous Heterogeneous	HĄ: 4 e	45% Non-fibrous (other)	15% Chrysotile 40% Amosite
RSA-BK-005 041012689-0005	2ND FLR BLD 7 HORIZONTAL PIPE SOUTH - 6" PIPEWRAP	Brown Fibrous Heterogeneous	85% Cellulose	5% Non-fibrous (other)	10% Chrysotile

Initial report from

Analyst(s)

Peter Harrison (12)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. The limit of detection as stated in the method is 1%. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. The test results meet all NELAC requirements unless otherwise specified.

Samples analyzed by EMSL Analytical, Inc. 200 Route 130 North, Cinnaminson NJ NVLAP Lab Code 101048-0, AIHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

200 Route 130 North, Cinnaminson, NJ 08077

Phone: (856) 858-4800

Fax: (856) 786-5974 Email: westmontasblab@EMSL.com

Attn: Christopher Burns

Tetra Tech EMI

7 Creek Parkway

Suite 700

Boothwyn, PA 19061

Customer ID:

TTEC50

Customer PO: Received:

06/16/10 9:00 AM

EMSL Order:

041012689

Fax:

(610) 485-8587

Phone: (610) 485-6410

Project: 103DX9004L100178 NJ samples

EMSL Proj:

Analysis Date:

7/6/2010

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

20 85 Colleton

				Non-Asbes	<u>tos</u>	Asbe	estos
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Ту	pe
RSA-BK-006 041012689-0006	3RD FLR BLD 7 HORIZONTAL PIPE NORTH - 10" PIPEWRAP	Brown Fibrous Heterogeneous	85%	Cellulose	5% Non-fibrous (other)	10%	Chrysotile
RSA-BK-007 041012689-0007	3RD FLR BLD 7 HORIZONTAL PIPE SOUTH - 6" PIPEWRAP	White Fibrous Heterogeneous	HA: 6		40% Non-fibrous (other)	60%	Chrysotile
RSA-BK-008 041012689-0008	3RD FLR BLD 7 VERTICAL PIPE NORTH REAR DOOR - 6" PIPEWRAP	White Fibrous Heterogeneous	HA: 7		35% Non-fibrous (other)	65%	Chrysotile
RSA-BK-009 041012689-0009	BLD 7 3RD FLR VERTICAL PIPE NORTH BACK WALL - 6" PIPEWRAP	White Fibrous Heterogeneous	Andrews Mark Sagets Mark Sagets Mark Sagets	errir	30% Non-fibrous (other)	70%	Chrysotile

Initial report from	n
---------------------	---

Analyst(s)

Peter Harrison (12)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. The limit of detection as stated in the method is 1%. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government The test results meet all NELAC requirements unless otherwise specified.

Samples analyzed by EMSL Analytical, Inc. 200 Route 130 North, Cinnaminson NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036

Constitution

200 Route 130 North, Cinnaminson, NJ 08077

Phone: (856) 858-4800 Fax: (856) 786-5974 Email: westmontasblab@EMSL.com

Attn: Christopher Burns

Tetra Tech EMI

7 Creek Parkway

Suite 700

Fax:

Project:

Boothwyn, PA 19061

(610) 485-8587

Phone: (610) 485-6410

103DX9004L100178 NJ samples

Customer ID:

TTEC50

Customer PO: Received:

06/16/10 9:00 AM

EMSL Order:

041012689

EMSL Proj:

Analysis Date:

7/6/2010

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using **Polarized Light Microscopy**

			,	Non-Asbe	estos	<u>Asbestos</u>
Sample	Description	Appearance	%	Fibrous	% Non-Fibrous	% Type
RSA-BK-010 041012689-0010	BLD 12 BASEMENT HORIZONTAL PIPE - 10" PIPEWRAP	Brown/White Fibrous Heterogeneous	35%	Cellulose	25% Non-fibrous (other)	40% Chrysotile
			HA: 10			
RSA-BK-011 041012689-0011	ON GROUND OUTSIDE BLD 7 SOUTH - WEATHERED PIPEWRAP	Brown/White Fibrous Heterogeneous	35%	Cellulose	20% Non-fibrous (other)	45% Chrysotile
			HA: 11			
RSA-BK-012 041012689-0012	BLD 7 OUTSIDE PIPE HORIZONTAL SOUTH - 6" PIPEWRAP	Brown/Black/Silver Fibrous Heterogeneous	3% 90%		7% Non-fibrous (other)	None Detected
		I	HA: 12			

Filorous

Initial report from

Analyst(s)

Peter Harrison (12)

Stephen Siegel, CIH, Laboratory Manager or other approved signatory

Due to magnification limitations inherent in PLM, asbestos fibers in dimensions below the resolution capability of PLM may not be detected. The limit of detection as stated in the method is 1%. The above test report relates only to the items tested and may not be reproduced in any form without the express written approval of EMSL Analytical, Inc. EMSL's liability is limited to the cost of analysis. EMSL bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the client. Samples received in good condition unless otherwise noted. This report must not be used to claim product endorsement by NVLAP or any agency of the U.S. Government. The test results meet all NELAC requirements unless otherwise specified.

Samples analyzed by EMSL Analytical, Inc. 200 Route 130 North, Cinnaminson NJ NVLAP Lab Code 101048-0, AlHA-LAP, LLC-IHLAP Lab 100194, NYS ELAP 10872, NJ DEP 03036